scholarly journals The science and medicine of human immunology

Science ◽  
2020 ◽  
Vol 369 (6511) ◽  
pp. eaay4014
Author(s):  
Bali Pulendran ◽  
Mark M. Davis

Although the development of effective vaccines has saved countless lives from infectious diseases, the basic workings of the human immune system are complex and have required the development of animal models, such as inbred mice, to define mechanisms of immunity. More recently, new strategies and technologies have been developed to directly explore the human immune system with unprecedented precision. We discuss how these approaches are advancing our mechanistic understanding of human immunology and are facilitating the development of vaccines and therapeutics for infection, autoimmune diseases, and cancer.

Vaccine ◽  
2013 ◽  
Vol 31 (28) ◽  
pp. 2911-2912 ◽  
Author(s):  
Gregory A. Poland ◽  
Helen Quill ◽  
Alkis Togias

Author(s):  
Tung Bui ◽  
Nguyen Thanh Hai ◽  
Nguyen Thi Huyen ◽  
Tu Thi Thu Hien ◽  
Pham Thi Minh Hue

Biomimetics is a discipline with great potential applications in many aspects of scientific research as well as in daily lives. One of such applications is mimicking the human immune system, a highly complex concept with various components and pathways. From biomimetics of human immunology, scientists have been furthering their knowledge as well as developing numerous products in diagnosing and treating a wide range of diseases.


Author(s):  
D. Goldblatt ◽  
M. Ramsay

Immunization is one of the most successful medical interventions ever developed: it prevents infectious diseases worldwide. Mechanism of effect—the basis for the success of immunization is that the human immune system is able to respond to vaccines by producing pathogen-specific antibody and memory cells (both B and T cells) which protect the body should the pathogen be encountered....


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Krzysztof Laudanski ◽  
Michael Stentz ◽  
Matthew DiMeglio ◽  
William Furey ◽  
Toby Steinberg ◽  
...  

Humanized mice are a state-of-the-art tool used to study several diseases, helping to close the gap between mice and human immunology. This review focuses on the potential obstacles in the analysis of immune system performance between humans and humanized mice in the context of severe acute inflammation as seen in sepsis or other critical care illnesses. The extent to which the reconstituted human immune system in mice adequately compares to the performance of the human immune system in human hosts is still an evolving question. Although certain viral and protozoan infections can be replicated in humanized mice, whether a highly complex and dynamic systemic inflammation like sepsis can be accurately represented by current humanized mouse models in a clinically translatable manner is unclear. Humanized mice are xenotransplant animals in the most general terms. Several organs (e.g., bone marrow mesenchymal cells, endothelium) cannot interact with the grafted human leukocytes effectively due to species specificity. Also the interaction between mice gut flora and the human immune system may be paradoxical. Often, grafting is performed utilizing an identical batch of stem cells in highly inbred animals which fails to account for human heterogeneity. Limiting factors include the substantial cost and restricting supply of animals. Finally, humanized mice offer an opportunity to gain knowledge of human-like conditions, requiring careful data interpretation just as in nonhumanized animals.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A763-A763
Author(s):  
Remko Schotte ◽  
Julien Villaudy ◽  
Martijn Kedde ◽  
Wouter Pos ◽  
Daniel Go ◽  
...  

BackgroundAdaptive immunity to cancer cells forms a crucial part of cancer immunotherapy. Recently, the importance of tumor B-cell signatures were shown to correlate with melanoma survival. We investigated whether tumor-targeting antibodies could be isolated from a patient that cured (now 13 years tumor-free) metastatic melanoma following adoptive transfer of ex vivo expanded autologous T cells.MethodsPatient‘s peripheral blood B cells were isolated and tested for the presence of tumor-reactive B cells using AIMM’s immmortalisation technology. Antibody AT1412 was identified by virtue of its differential binding to melanoma cells as compared to healthy melanocytes. AT1412 binds the tetraspanin CD9, a broadly expressed protein involved in multiple cellular activities in cancer and induces ADCC and ADCP by effector cells.ResultsSpontaneous immune rejection of tumors was observed in human immune system (HIS) mouse models implanted with CD9 genetically-disrupted A375 melanoma (A375-CD9KO) tumor cells, while A375wt cells were not cleared. Most notably, no tumor rejection of A375-CD9KO tumors was observed in NSG mice, indicating that blockade of CD9 makes tumor cells susceptible to immune rejection.CD9 has been described to regulate integrin signaling, e.g. LFA-1, VLA-4, VCAM-1 and ICAM-1. AT1412 was shown to modulate CD9 function by enhancing adhesion and transmigration of T cells to endothelial (HUVEC) cells. AT1412 was most potently enhancing transendothelial T-cell migration, in contrast to a high affinity version of AT1412 or other high affinity anti-CD9 reference antibodies (e.g. ALB6). Enhanced immune cell infiltration is also observed in immunodeficient mice harbouring a human immune system (HIS). AT1412 strongly enhanced CD8 T-cell and macrophage infiltration resulting in tumor rejection (A375 melanoma). PD-1 checkpoint blockade is further sustaining this effect. In a second melanoma model carrying a PD-1 resistant and highly aggressive tumor (SK-MEL5) AT1412 together with nivolumab was inducing full tumor rejection, while either one of the antibodies alone did not.ConclusionsThe safety of AT1412 has been assessed in preclinical development and is well tolerated up to 10 mg/kg (highest dose tested) by non human primates. AT1412 demonstrated a half-life of 8.5 days, supporting 2–3 weekly administration in humans. Besides transient thrombocytopenia no other pathological deviations were observed. No effect on coagulation parameters, bruising or bleeding were observed macro- or microscopically. The thrombocytopenia is reversible, and its recovery accelerated in those animals developing anti-drug antibodies. First in Human clinical study is planned to start early 2021.Ethics ApprovalStudy protocols were approved by the Medical Ethical Committee of the Leiden University Medical Center (Leiden, Netherlands).ConsentBlood was obtained after written informed consent by the patient.


2000 ◽  
Vol 106 (3) ◽  
pp. 530-536 ◽  
Author(s):  
Zsolt Szépfalusi ◽  
Josefa Pichler ◽  
Stefan Elsässer ◽  
Katalin van Duren ◽  
Christof Ebner ◽  
...  

Virulence ◽  
2010 ◽  
Vol 1 (5) ◽  
pp. 440-464 ◽  
Author(s):  
Jochen Wiesner ◽  
Andreas Vilcinskas

2015 ◽  
Vol 267 ◽  
pp. 304-313 ◽  
Author(s):  
T.M. do Nascimento ◽  
J.M. de Oliveira ◽  
M.P. Xavier ◽  
A.B. Pigozzo ◽  
R.W. dos Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document