scholarly journals Functional diversity of human intrinsically photosensitive retinal ganglion cells

Science ◽  
2019 ◽  
Vol 366 (6470) ◽  
pp. 1251-1255 ◽  
Author(s):  
Ludovic S. Mure ◽  
Frans Vinberg ◽  
Anne Hanneken ◽  
Satchidananda Panda

Intrinsically photosensitive retinal ganglion cells (ipRGCs) are a subset of cells that participate in image-forming and non–image-forming visual responses. Although both functional and morphological subtypes of ipRGCs have been described in rodents, parallel functional subtypes have not been identified in primate or human retinas. In this study, we used a human organ donor preparation method to measure human ipRGCs’ photoresponses. We discovered three functional ipRGC subtypes with distinct sensitivities and responses to light. The response of one ipRGC subtype appeared to depend on exogenous chromophore supply, and this response is conserved in both human and mouse retinas. Rods and cones also provided input to ipRGCs; however, each subtype integrated outer retina light signals in a distinct fashion.

2018 ◽  
Vol 115 (50) ◽  
pp. E11817-E11826 ◽  
Author(s):  
Nina Milosavljevic ◽  
Riccardo Storchi ◽  
Cyril G. Eleftheriou ◽  
Andrea Colins ◽  
Rasmus S. Petersen ◽  
...  

Information transfer in the brain relies upon energetically expensive spiking activity of neurons. Rates of information flow should therefore be carefully optimized, but mechanisms to control this parameter are poorly understood. We address this deficit in the visual system, where ambient light (irradiance) is predictive of the amount of information reaching the eye and ask whether a neural measure of irradiance can therefore be used to proactively control information flow along the optic nerve. We first show that firing rates for the retina’s output neurons [retinal ganglion cells (RGCs)] scale with irradiance and are positively correlated with rates of information and the gain of visual responses. Irradiance modulates firing in the absence of any other visual signal confirming that this is a genuine response to changing ambient light. Irradiance-driven changes in firing are observed across the population of RGCs (including in both ON and OFF units) but are disrupted in mice lacking melanopsin [the photopigment of irradiance-coding intrinsically photosensitive RGCs (ipRGCs)] and can be induced under steady light exposure by chemogenetic activation of ipRGCs. Artificially elevating firing by chemogenetic excitation of ipRGCs is sufficient to increase information flow by increasing the gain of visual responses, indicating that enhanced firing is a cause of increased information transfer at higher irradiance. Our results establish a retinal circuitry driving changes in RGC firing as an active response to alterations in ambient light to adjust the amount of visual information transmitted to the brain.


2020 ◽  
Author(s):  
Kwang Wook Min ◽  
Namsuk Kim ◽  
Jae Hoon Lee ◽  
Younghoon Sung ◽  
Museong Kim ◽  
...  

ABSTRACTIn animals that exhibit stereoscopic visual responses, the axons of retinal ganglion cells (RGCs) connect to brain areas bilaterally by forming a commissure called the optic chiasm (OC). Ventral anterior homeobox 1 (Vax1) contributes to formation of the OC, acting endogenously in optic pathway cells and exogenously in growing RGC axons. Here, we generated Vax1AA/AA mice expressing the Vax1AA mutant, which is selectively incapable of intercellular transfer. We found that RGC axons cannot take up Vax1AA protein from Vax1AA/AA mouse optic stalk (OS) cells, of which maturation is delayed, and fail to access the midline. Consequently, RGC axons of Vax1AA/AA mice connect exclusively to ipsilateral brain areas, resulting in the loss of stereoscopic vision and the inversed oculomotor responses. Together, our study provides physiological evidence for the necessity of intercellular transfer of Vax1 and the importance of the OC in binocular visual responses.


2010 ◽  
Vol 277 (1693) ◽  
pp. 2485-2492 ◽  
Author(s):  
Sei-ichi Tsujimura ◽  
Kazuhiko Ukai ◽  
Daisuke Ohama ◽  
Atsuo Nuruki ◽  
Kazutomo Yunokuchi

The recent discovery of melanopsin-containing retinal ganglion cells (mRGCs) has led to a fundamental reassessment of non-image forming processing, such as circadian photoentrainment and the pupillary light reflex. In the conventional view of retinal physiology, rods and cones were assumed to be the only photoreceptors in the eye and were, therefore, considered responsible for non-image processing. However, signals from mRGCs contribute to this non-image forming processing along with cone-mediated luminance signals; although both signals contribute, it is unclear how these signals are summed. We designed and built a novel multi-primary stimulation system to stimulate mRGCs independently of other photoreceptors using a silent-substitution technique within a bright steady background. The system allows direct measurements of pupillary functions for mRGCs and cones. We observed a significant change in steady-state pupil diameter when we varied the excitation of mRGC alone, with no change in luminance and colour. Furthermore, the change in pupil diameter induced by mRGCs was larger than that induced by a variation in luminance alone: that is, for a bright steady background, the mRGC signals contribute to the pupillary pathway by a factor of three times more than the L- and M-cone signals.


2020 ◽  
Vol 124 (2) ◽  
pp. 432-442
Author(s):  
Allison J. Murphy ◽  
J. Michael Hasse ◽  
Farran Briggs

Interest in visual system homologies across species has recently increased. Across species, retinas contain diverse retinal ganglion cells including cells with unusual visual response properties. It is unclear whether rare retinal ganglion cells in carnivores project to and drive similarly unique visual responses in the visual thalamus. We discovered a rare subpopulation of thalamic neurons defined by unique spike shape and visual response properties, suggesting that nonstandard visual computations are common to many species.


Perception ◽  
1980 ◽  
Vol 9 (6) ◽  
pp. 633-650 ◽  
Author(s):  
Bruce Drum

‘Equal-brightness' functions of retinal eccentricity and target diameter were measured by a matching procedure, and compared with the corresponding threshold functions for four different adaptation conditions: light-adapted cones (LAC), dark-adapted cones (DAC), light-adapted rods (LAR) and dark-adapted rods (DAR). The separation between log brightness matches and log thresholds decreased with eccentricity and increased with target size for all adaptation conditions, but overall separation was substantially greater for the DAR condition than for the other three. A two-channel model of achromatic brightness is proposed to explain the results. The model assumes ‘strong’ and ‘weak’ channels, which contribute unequally to brightness. These channels are tentatively identified with tonic and phasic classes of retinal ganglion cells.


2015 ◽  
Vol 56 (4) ◽  
pp. 2639 ◽  
Author(s):  
João Martins ◽  
Bogdan Kolomiets ◽  
Romain Caplette ◽  
José-Alain Sahel ◽  
Miguel Castelo-Branco ◽  
...  

Author(s):  
Megumi Hatori ◽  
Hiep Le ◽  
Christopher Vollmers ◽  
Sheena Racheal Keding ◽  
Nobushige Tanaka ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Ludovic S. Mure

Light profoundly affects our mental and physical health. In particular, light, when not delivered at the appropriate time, may have detrimental effects. In mammals, light is perceived not only by rods and cones but also by a subset of retinal ganglion cells that express the photopigment melanopsin that renders them intrinsically photosensitive (ipRGCs). ipRGCs participate in contrast detection and play critical roles in non-image-forming vision, a set of light responses that include circadian entrainment, pupillary light reflex (PLR), and the modulation of sleep/alertness, and mood. ipRGCs are also found in the human retina, and their response to light has been characterized indirectly through the suppression of nocturnal melatonin and PLR. However, until recently, human ipRGCs had rarely been investigated directly. This gap is progressively being filled as, over the last years, an increasing number of studies provided descriptions of their morphology, responses to light, and gene expression. Here, I review the progress in our knowledge of human ipRGCs, in particular, the different morphological and functional subtypes described so far and how they match the murine subtypes. I also highlight questions that remain to be addressed. Investigating ipRGCs is critical as these few cells play a major role in our well-being. Additionally, as ipRGCs display increased vulnerability or resilience to certain disorders compared to conventional RGCs, a deeper knowledge of their function could help identify therapeutic approaches or develop diagnostic tools. Overall, a better understanding of how light is perceived by the human eye will help deliver precise light usage recommendations and implement light-based therapeutic interventions to improve cognitive performance, mood, and life quality.


2020 ◽  
Author(s):  
Hartwig Seitter ◽  
Vithiyanjali Sothilingam ◽  
Boris Benkner ◽  
Marina Garcia Garrido ◽  
Alexandra Kling ◽  
...  

AbstractLittle is known about the function of the auxiliary α2δ subunits of voltage-gated calcium channels in the retina. We investigated the role of α2δ-3 (Cacna2d3) using a mouse in which α2δ-3 was knocked out by LacZ insertion. Behavior experiments indicated a normal optokinetic reflex in α2δ-3 knockout animals. Strong expression of α2δ-3 could be localized to horizontal cells using the LacZ-reporter, but horizontal cell mosaic and currents carried by horizontal cell voltage-gated calcium channels were unchanged by the α2δ-3 knockout. In vivo electroretinography revealed unaffected photoreceptor activity and signal transmission to depolarizing bipolar cells. We recorded visual responses of retinal ganglion cells with multi-electrode arrays in scotopic to photopic luminance levels and found subtle changes in α2δ-3 knockout retinas. Spontaneous activity in OFF ganglion cells was elevated in all luminance levels. Differential response strength to high- and low-contrast Gaussian white noise was compressed in ON ganglion cells during mesopic ambient luminance and in OFF ganglion cells during scotopic and mesopic ambient luminances. In a subset of ON ganglion cells, we found a sharp increase in baseline spiking after the presentation of drifting gratings in scotopic luminance. This increase happened after gratings of different spatial properties in knockout compared to wild type retinas. In a subset of ON ganglion cells of the α2δ-3 knockout, we found altered delays in rebound-like spiking to full-field contrast steps in scotopic luminance. In conclusion, α2δ-3 seems to participate in shaping visual responses mostly within brightness regimes when rods or both rods and cones are active.


Sign in / Sign up

Export Citation Format

Share Document