scholarly journals Bifurcation of planetary building blocks during Solar System formation

Science ◽  
2021 ◽  
Vol 371 (6527) ◽  
pp. 365-370
Author(s):  
Tim Lichtenberg ◽  
Joanna Dra̧żkowska ◽  
Maria Schönbächler ◽  
Gregor J. Golabek ◽  
Thomas O. Hands

Geochemical and astronomical evidence demonstrates that planet formation occurred in two spatially and temporally separated reservoirs. The origin of this dichotomy is unknown. We use numerical models to investigate how the evolution of the solar protoplanetary disk influenced the timing of protoplanet formation and their internal evolution. Migration of the water snow line can generate two distinct bursts of planetesimal formation that sample different source regions. These reservoirs evolve in divergent geophysical modes and develop distinct volatile contents, consistent with constraints from accretion chronology, thermochemistry, and the mass divergence of inner and outer Solar System. Our simulations suggest that the compositional fractionation and isotopic dichotomy of the Solar System was initiated by the interplay between disk dynamics, heterogeneous accretion, and internal evolution of forming protoplanets.


2014 ◽  
Vol 9 (S310) ◽  
pp. 194-203 ◽  
Author(s):  
Sean N. Raymond ◽  
Alessandro Morbidelli

AbstractThe “Grand Tack” model proposes that the inner Solar System was sculpted by the giant planets' orbital migration in the gaseous protoplanetary disk. Jupiter first migrated inward then Jupiter and Saturn migrated back outward together. If Jupiter's turnaround or “tack” point was at ~ 1.5 AU the inner disk of terrestrial building blocks would have been truncated at ~ 1 AU, naturally producing the terrestrial planets' masses and spacing. During the gas giants' migration the asteroid belt is severely depleted but repopulated by distinct planetesimal reservoirs that can be associated with the present-day S and C types. The giant planets' orbits are consistent with the later evolution of the outer Solar System.Here we confront common criticisms of the Grand Tack model. We show that some uncertainties remain regarding the Tack mechanism itself; the most critical unknown is the timing and rate of gas accretion onto Saturn and Jupiter. Current isotopic and compositional measurements of Solar System bodies – including the D/H ratios of Saturn's satellites – do not refute the model. We discuss how alternate models for the formation of the terrestrial planets each suffer from an internal inconsistency and/or place a strong and very specific requirement on the properties of the protoplanetary disk.We conclude that the Grand Tack model remains viable and consistent with our current understanding of planet formation. Nonetheless, we encourage additional tests of the Grand Tack as well as the construction of alternate models.



1973 ◽  
Vol 14 (3-4) ◽  
pp. 363-382
Author(s):  
D. Herman ◽  
J. Moore ◽  
P. Tarver


2021 ◽  
Vol 30 (1) ◽  
pp. 45-55
Author(s):  
Péter Futó ◽  
József Vanyó ◽  
Irakli Simonia ◽  
János Sztakovics ◽  
Mihály Nagy ◽  
...  

Abstract Kaba meteorite as a reference material (one of a least metamorphosed and most primitive carbonaceous chondrites fell on Earth) was chosen for this study providing an adequate background for study of the protoplanetary disk or even the crystallization processes of the Early Solar System. Its olivine minerals (forsterite and fayalite) and their Mg/Fe ratio can help us to understand more about the planet formation mechanism and whether or not the metallic constitutes of the disk could be precursors for the type of planets in the Solar System. A multiple methodological approach such as a combination of the scanning electron microscope, optical microscope, Raman spectroscopy and electron microprobe of the olivine grains give the Fe/Mg ratio database. The analyses above confirmed that planet formation in the protoplanetary disk is driven by the mineralogical precursors of the crystallization process. On the other hand, four nebulae mentioned in this study provide the astronomical data confirming that the planet formation in the protoplanetary disk is dominated or even driven by the metallic constituents.



2020 ◽  
Author(s):  
Linda Podio ◽  
Antonio Garufi ◽  
Claudio Codella ◽  
Davide Fedele ◽  
Kazi Rygl ◽  
...  

<p>How have planets formed in the Solar System? And what chemical composition they inherited from their natal environment? Is the chemical composition passed unaltered from the earliest stages of the formation of the Sun to its disk and then to the planets which assembled in the disk? Or does it reflects chemical processes occurring in the disk and/or during the planet formation process? And what was the role of comets in the delivery of volatiles and prebiotic compounds to early Earth?</p> <p>A viable way to answer these questions is to observe protoplanetary disks around young Sun-like stars and compare their chemical composition with that of the early Solar System, which is imprinted in comets. The impacting images recently obtained by millimetre arrays of antennas such as ALMA provided the first observational evidence of ongoing planet formation in 0.1-1 million years old disks, through rings and gaps in their dust and gas distribution. The chemical composition of the forming planets and small bodies clearly depends on the location and timescale for their formation and is intimately connected to the spatial distribution and abundance of the various molecular species in the disk. The chemical characterisation of disks is therefore crucial.</p> <p>This field, however, is still in its infancy, because of the small sizes of disks (~100 au) and to the low gas-phase abundance of molecules (abundances with respect to H<sub>2</sub> down to 10<sup>-12</sup>), which requires an unprecedented combination of angular resolution and sensitivity. I will show the first pioneering results obtained as part of the ALMA chemical survey of protoplanetary disks in the Taurus star forming region (ALMA-DOT program). Thanks to the ALMA images at ~20 au resolution, we recovered the radial distribution and abundance of diatomic molecules (CO and CN), S-bearing molecules (CS, SO, SO<sub>2</sub>, H<sub>2</sub>CS), as well as simple organics (H<sub>2</sub>CO and CH<sub>3</sub>OH) which are key for the formation of prebiotic compounds. Enhanced H<sub>2</sub>CO emission in the cold outer disk, outside the CO snowline, suggests that organic molecules may be efficiently formed in disks on the icy mantles of dust grain. This could be the dawn of ice chemistry in the disk, producing ices rich of complex organic molecules (COMs) which could be incorporated by the bodies forming in the outer disk region, such as comets.<span class="Apple-converted-space"> </span></p> <p>The next step is the comparison of the molecules radial distribution and abundance in disks with the chemical composition of comets, which are the leftover building blocks of giant planet cores and other planetary bodies. The first pioneering results in this direction have been obtained thanks to the ESA’s <em>Rosetta </em>mission, which allowed obtaining in situ measurements of the COMs abundance on the comet 67P/Churyumov-Gerasimenko. The comparison with three protostellar solar analogs observed on Solar System scales has shown comparable COMs abundance, implying that the volatile composition of comets and planetesimals may be partially inherited from the protostellar stage. The advent of new mission, devoted to sample return such as AMBITION will allow us to do a step ahead in this direction.</p> <p> </p>



2002 ◽  
Vol 114 (793) ◽  
pp. 265-283 ◽  
Author(s):  
Scott J. Kenyon


2016 ◽  
Vol 2 (7) ◽  
pp. e1601001 ◽  
Author(s):  
Yves Marrocchi ◽  
Marc Chaussidon ◽  
Laurette Piani ◽  
Guy Libourel

Meteoritic chondrules are submillimeter spherules representing the major constituent of nondifferentiated planetesimals formed in the solar protoplanetary disk. The link between the dynamics of the disk and the origin of chondrules remains enigmatic. Collisions between planetesimals formed at different heliocentric distances were frequent early in the evolution of the disk. We show that the presence, in some chondrules, of previously unrecognized magnetites of magmatic origin implies the formation of these chondrules under impact-generated oxidizing conditions. The three oxygen isotopes systematic of magmatic magnetites and silicates can only be explained by invoking an impact between silicate-rich and ice-rich planetesimals. This suggests that these peculiar chondrules are by-products of the early mixing in the disk of populations of planetesimals from the inner and outer solar system.



2020 ◽  
Vol 117 (38) ◽  
pp. 23426-23435 ◽  
Author(s):  
Curtis D. Williams ◽  
Matthew E. Sanborn ◽  
Céline Defouilloy ◽  
Qing-Zhu Yin ◽  
Noriko T. Kita ◽  
...  

Dynamic models of the protoplanetary disk indicate there should be large-scale material transport in and out of the inner Solar System, but direct evidence for such transport is scarce. Here we show that the ε50Ti-ε54Cr-Δ17O systematics of large individual chondrules, which typically formed 2 to 3 My after the formation of the first solids in the Solar System, indicate certain meteorites (CV and CK chondrites) that formed in the outer Solar System accreted an assortment of both inner and outer Solar System materials, as well as material previously unidentified through the analysis of bulk meteorites. Mixing with primordial refractory components reveals a “missing reservoir” that bridges the gap between inner and outer Solar System materials. We also observe chondrules with positive ε50Ti and ε54Cr plot with a constant offset below the primitive chondrule mineral line (PCM), indicating that they are on the slope ∼1.0 in the oxygen three-isotope diagram. In contrast, chondrules with negative ε50Ti and ε54Cr increasingly deviate above from PCM line with increasing δ18O, suggesting that they are on a mixing trend with an ordinary chondrite-like isotope reservoir. Furthermore, the Δ17O-Mg# systematics of these chondrules indicate they formed in environments characterized by distinct abundances of dust and H2O ice. We posit that large-scale outward transport of nominally inner Solar System materials most likely occurred along the midplane associated with a viscously evolving disk and that CV and CK chondrules formed in local regions of enhanced gas pressure and dust density created by the formation of Jupiter.



2020 ◽  
Vol 497 (1) ◽  
pp. 1166-1180
Author(s):  
Sota Arakawa ◽  
Kazumasa Ohno

ABSTRACT The Rosetta mission to comet 67P/Churyumov–Gerasimenko has provided new data to better understand what comets are made of. The weak tensile strength of the cometary surface materials suggests that the comet is a hierarchical dust aggregate formed through gravitational collapse of a bound clump of small dust aggregates so-called ‘pebbles’ in the gaseous solar nebula. Since pebbles are the building blocks of comets, which are the survivors of planetesimals in the solar nebula, estimating the size of pebbles using a combination of thermal observations and numerical calculations is of great importance to understand the planet formation in the outer Solar system. In this study, we calculated the thermal inertias and thermal skin depths of the hierarchical aggregates of pebbles, for both diurnal and orbital variations of the temperature. We found that the thermal inertias of the comet 67P/Churyumov–Gerasimenko are consistent with the hierarchical aggregate of cm- to dm-sized pebbles. Our findings indicate that the icy planetesimals may have formed via accretion of cm- to dm-sized pebbles in the solar nebula.



2021 ◽  
Vol 7 (1) ◽  
pp. eaba5967
Author(s):  
Benjamin P. Weiss ◽  
Xue-Ning Bai ◽  
Roger R. Fu

We review recent advances in our understanding of magnetism in the solar nebula and protoplanetary disks (PPDs). We discuss the implications of theory, meteorite measurements, and astronomical observations for planetary formation and nebular evolution. Paleomagnetic measurements indicate the presence of fields of 0.54 ± 0.21 G at ~1 to 3 astronomical units (AU) from the Sun and ≳0.06 G at 3 to 7 AU until >1.22 and >2.51 million years (Ma) after solar system formation, respectively. These intensities are consistent with those predicted to enable typical astronomically observed protostellar accretion rates of ~10−8M⊙year−1, suggesting that magnetism played a central role in mass transport in PPDs. Paleomagnetic studies also indicate fields <0.006 G and <0.003 G in the inner and outer solar system by 3.94 and 4.89 Ma, respectively, consistent with the nebular gas having dispersed by this time. This is similar to the observed lifetimes of extrasolar protoplanetary disks.



2020 ◽  
Vol 4 (5) ◽  
pp. 492-499 ◽  
Author(s):  
R. Brasser ◽  
S. J. Mojzsis


Sign in / Sign up

Export Citation Format

Share Document