scholarly journals Developmental clock and mechanism of de novo polarization of the mouse embryo

Science ◽  
2020 ◽  
Vol 370 (6522) ◽  
pp. eabd2703
Author(s):  
Meng Zhu ◽  
Jake Cornwall-Scoones ◽  
Peizhe Wang ◽  
Charlotte E. Handford ◽  
Jie Na ◽  
...  

Embryo polarization is critical for mouse development; however, neither the regulatory clock nor the molecular trigger that it activates is known. Here, we show that the embryo polarization clock reflects the onset of zygotic genome activation, and we identify three factors required to trigger polarization. Advancing the timing of transcription factor AP-2 gamma (Tfap2c) and TEA domain transcription factor 4 (Tead4) expression in the presence of activated Ras homolog family member A (RhoA) induces precocious polarization as well as subsequent cell fate specification and morphogenesis. Tfap2c and Tead4 induce expression of actin regulators that control the recruitment of apical proteins on the membrane, whereas RhoA regulates their lateral mobility, allowing the emergence of the apical domain. Thus, Tfap2c, Tead4, and RhoA are regulators for the onset of polarization and cell fate segregation in the mouse.

2005 ◽  
Vol 14 (2) ◽  
pp. 140-152 ◽  
Author(s):  
Gurudutta U. Gangenahalli ◽  
Pallavi Gupta ◽  
Daman Saluja ◽  
Yogesh K. Verma ◽  
Vimal Kishore ◽  
...  

2020 ◽  
Vol 10 (9) ◽  
pp. 3071-3085
Author(s):  
Wendy Aquino-Nunez ◽  
Zachery E Mielko ◽  
Trae Dunn ◽  
Elise M Santorella ◽  
Ciara Hosea ◽  
...  

Abstract Identifying the mechanisms behind neuronal fate specification are key to understanding normal neural development in addition to neurodevelopmental disorders such as autism and schizophrenia. In vivo cell fate specification is difficult to study in vertebrates. However, the nematode Caenorhabditis elegans, with its invariant cell lineage and simple nervous system of 302 neurons, is an ideal organism to explore the earliest stages of neural development. We used a comparative transcriptome approach to examine the role of cnd-1/NeuroD1 in C. elegans nervous system development and function. This basic helix-loop-helix transcription factor is deeply conserved across phyla and plays a crucial role in cell fate specification in both the vertebrate nervous system and pancreas. We find that cnd-1 controls expression of ceh-5, a Vax2-like homeobox class transcription factor, in the RME head motorneurons and PVQ tail interneurons. We also show that cnd-1 functions redundantly with the Hox gene ceh-13/labial in defining the fate of DD1 and DD2 embryonic ventral nerve cord motorneurons. These data highlight the utility of comparative transcriptomes for identifying transcription factor targets and understanding gene regulatory networks.


2013 ◽  
Vol 33 (9) ◽  
pp. 1768-1781 ◽  
Author(s):  
Baeck-seung Lee ◽  
Joseph D. Dekker ◽  
Bum-kyu Lee ◽  
Vishwanath R. Iyer ◽  
Barry P. Sleckman ◽  
...  

Recombination-activating gene 1 protein (RAG1) and RAG2 are critical enzymes for initiating variable-diversity-joining (VDJ) segment recombination, an essential process for antigen receptor expression and lymphocyte development. The transcription factor BCL11A is required for B cell development, but its molecular function(s) in B cell fate specification and commitment is unknown. We show here that the major B cell isoform, BCL11A-XL, binds the RAG1 promoter and Erag enhancer to activate RAG1 and RAG2 transcription in pre-B cells. We employed BCL11A overexpression with recombination substrates in a cultured pre-B cell line as well as Cre recombinase-mediated Bcl11a lox/lox deletion in explanted murine pre-B cells to demonstrate direct consequences of BCL11A/RAG modulation on V(D)J recombination. We conclude that BCL11A is a critical component of a transcriptional network that regulates B cell fate by controlling V(D)J recombination.


Development ◽  
2013 ◽  
Vol 140 (20) ◽  
pp. 4129-4144 ◽  
Author(s):  
Y. Kamachi ◽  
H. Kondoh

2003 ◽  
Vol 259 (1) ◽  
pp. 150-161 ◽  
Author(s):  
Jun Motoyama ◽  
Ljiljana Milenkovic ◽  
Mizuho Iwama ◽  
Yayoi Shikata ◽  
Matthew P. Scott ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document