conformational switching
Recently Published Documents


TOTAL DOCUMENTS

343
(FIVE YEARS 62)

H-INDEX

46
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Ranita Ramesh ◽  
Sean M. Braet ◽  
Varun Venkatakrishnan ◽  
Palur Venkata Raghuvamsi ◽  
Jonathan Chua Wei Bao ◽  
...  

Viruses are metastable macromolecular assemblies containing a nucleic acid core packaged by capsid proteins that are primed to disassemble in host-specific environments leading to genome release and replication. The mechanism of how viruses sense environmental changes associated with host entry to prime them for disassembly is unknown. We have applied a combination of mass spectrometry, cryo-EM, and simulation-assisted structure refinement to Turnip crinkle virus (TCV), which serves as a model non-enveloped icosahedral virus (Triangulation number = 3, 180 copies/icosahedron). Our results reveal genomic RNA tightly binds a subset of viral coat proteins to form a stable RNA-capsid core which undergoes conformational switching in response to host-specific environmental changes. These changes include: i) Depletion of Ca 2+ which triggers viral particle expansion ii) Increase in osmolytes further disrupt interactions of outer coat proteins from the RNA-capsid core to promote complete viral disassembly. A cryo-EM structure of the expanded particle shows that RNA is asymmetrically extruded from a single 5-fold axis during disassembly. The genomic RNA:capsid protein interactions confer metastability to the TCV capsid and drive release of RNA from the disassembling virion within the plant host cell.


2021 ◽  
Author(s):  
Bence Bruncsics ◽  
Wesley J. Errington ◽  
Casim A. Sarkar

Arising through multiple binding elements, multivalency can specify the avidity, duration, cooperativity, and selectivity of biomolecular interactions, but quantitative prediction and design of these properties has remained challenging. Here we present MVsim, an application suite built around a configurational network model of multivalency to facilitate the quantification, design, and mechanistic evaluation of multivalent binding phenomena through a simple graphical user interface. To demonstrate the utility and versatility of MVsim, we first show that both monospecific and multispecific multivalent ligand-receptor interactions, with their noncanonical binding kinetics, can be accurately simulated. We then quantitatively predict the ultrasensitivity and performance of multivalent-encoded protein logic gates, evaluate the inherent programmability of multispecificity for selective receptor targeting, and extract rate constants of conformational switching for the SARS-CoV-2 spike protein and model its binding to ACE2 as well as multivalent inhibitors of this interaction. MVsim is freely available at https://sarkarlab.github.io/MVsim/.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3060
Author(s):  
Hamish D McMillan ◽  
Karen Keeshan ◽  
Anita K Dunbier ◽  
Peter D Mace

The Tribbles family of proteins—comprising TRIB1, TRIB2, TRIB3 and more distantly related STK40—play important, but distinct, roles in differentiation, development and oncogenesis. Of the four Tribbles proteins, TRIB1 has been most well characterised structurally and plays roles in diverse cancer types. The most well-understood role of TRIB1 is in acute myeloid leukaemia, where it can regulate C/EBP transcription factors and kinase pathways. Structure–function studies have uncovered conformational switching of TRIB1 from an inactive to an active state when it binds to C/EBPα. This conformational switching is centred on the active site of TRIB1, which appears to be accessible to small-molecule inhibitors in spite of its inability to bind ATP. Beyond myeloid neoplasms, TRIB1 plays diverse roles in signalling pathways with well-established roles in tumour progression. Thus, TRIB1 can affect both development and chemoresistance in leukaemia; glioma; and breast, lung and prostate cancers. The pervasive roles of TRIB1 and other Tribbles proteins across breast, prostate, lung and other cancer types, combined with small-molecule susceptibility shown by mechanistic studies, suggests an exciting potential for Tribbles as direct targets of small molecules or biomarkers to predict treatment response.


ChemPlusChem ◽  
2021 ◽  
Author(s):  
Dongyao Li ◽  
Tian Qin ◽  
Xinlu Liu ◽  
Boyuan Zhang ◽  
Fangrui Zhong ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiabin Yao ◽  
Wanhua Wu ◽  
Chao Xiao ◽  
Dan Su ◽  
Zhihui Zhong ◽  
...  

AbstractStimuli-responsive intelligent molecular machines/devices are of current research interest due to their potential application in minimized devices. Constructing molecular machines/devices capable of accomplishing complex missions is challenging, demanding coalescence of various functions into one molecule. Here we report the construction of intelligent molecular chiroptical photoswitches based on azobenzene-fused bicyclic pillar[n]arene derivatives, which we defined as molecular universal joints (MUJs). The Z/E photoisomerization of the azobenzene moiety of MUJs induces rolling in/out conformational switching of the azobenzene-bearing side-ring and consequently leads to planar chirality switching of MUJs. Meanwhile, temperature variation was demonstrated to also cause conformational/chiroptical inversion due to the significant entropy change during the ring-flipping. As a result, photo-induced chiroptical switching could be prohibited when the temperature exceeded an upper limit, demonstrating an intelligent molecular photoswitch having over-temperature protection function, which is in stark contrast to the low-temperature-gating effect commonly encountered.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Erich Stefan ◽  
Richard Obexer ◽  
Susanne Hofmann ◽  
Khanh Vu Huu ◽  
Yichao Huang ◽  
...  

ATP-binding cassette (ABC) transporters constitute the largest family of primary active transporters involved in a multitude of physiological processes and human diseases. Despite considerable efforts, it remains unclear how ABC transporters harness the chemical energy of ATP to drive substrate transport across cell membranes. Here, by random nonstandard peptide integrated discovery (RaPID), we leveraged combinatorial macrocyclic peptides that target a heterodimeric ABC transport complex and explore fundamental principles of the substrate translocation cycle. High-affinity peptidic macrocycles bind conformationally selective and display potent multimode inhibitory effects. The macrocycles block the transporter either before or after unidirectional substrate export along a single conformational switch induced by ATP binding. Our study reveals mechanistic principles of ATP binding, conformational switching, and energy transduction for substrate transport of ABC export systems. We highlight the potential of de novo macrocycles as effective inhibitors for membrane proteins implicated in multidrug resistance, providing avenues for the next-generation of pharmaceuticals.


2021 ◽  
Vol 72 (1) ◽  
Author(s):  
Mei-Chun Cheng ◽  
Praveen Kumar Kathare ◽  
Inyup Paik ◽  
Enamul Huq

The perception of light signals by the phytochrome family of photoreceptors has a crucial influence on almost all aspects of growth and development throughout a plant's life cycle. The holistic regulatory networks orchestrated by phytochromes, including conformational switching, subcellular localization, direct protein-protein interactions, transcriptional and posttranscriptional regulations, and translational and posttranslational controls to promote photomorphogenesis, are highly coordinated and regulated at multiple levels. During the past decade, advances using innovative approaches have substantially broadened our understanding of the sophisticated mechanisms underlying the phytochrome-mediated light signaling pathways. This review discusses and summarizes these discoveries of the role of the modular structure of phytochromes, phytochrome-interacting proteins, and their functions; the reciprocal modulation of both positive and negative regulators in phytochrome signaling; the regulatory roles of phytochromes in transcriptional activities, alternative splicing, and translational regulation; and the kinases and E3 ligases that modulate PHYTOCHROME INTERACTING FACTORs to optimize photomorphogenesis. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document