scholarly journals Fat Cells Gain New Identities

2014 ◽  
Vol 6 (247) ◽  
pp. 247fs29-247fs29 ◽  
Author(s):  
Emmani B. M. Nascimento ◽  
Mariëtte R. Boon ◽  
Wouter D. van Marken Lichtenbelt

ASC-1, PAT2, and P2RX5 are newly identified cell-surface proteins that may distinguish brown/beige from white adipocytes in mouse and human adipose tissue (Ussar et al., this issue).

2009 ◽  
Vol 21 (1) ◽  
pp. 241
Author(s):  
K. J. Williams ◽  
R. A. Godke ◽  
K. R. Bondioli

Human adipose tissue-derived adult stem (ADAS) cells are a self-renewing population of cells with a multilineage plasticity similar to bone marrow-derived mesenchymal stem cells. Human ADAS have promise for use in combination with various biomaterials for reconstructive tissue engineering. The phenotypic profile of human ADAS cell surface proteins has been partially characterized for stem cell-associated cluster differentiation molecules including CD29, CD44, and CD90. Porcine ADAS cells, an animal model for tissue engineering, also have the ability to self-renew and differentiate into multiple tissue lineages. However, the surface protein phenotype has not been described. Because porcine ADAS are isolated from fat depots likely different from human ADAS liposuction aspirates, it is important to characterize these cells. In this study, we have partially characterized the surface protein phenotype of undifferentiated porcine ADAS cells in comparison with the immunophenotype of undifferentiated human ADAS cells as reported in the literature. Flow cytometry and enhanced chemiluminescence Western blot analysis of early passage (passages 0–4) porcine ADAS cell populations demonstrated that the profiles are not similar to the human ADAS cell surface. Immunoblot detection paired with an enhanced chemiluminescence kit revealed a positive expression for CD44 and CD90 in human ADAS cells as indicated by bands present at the expected sizes and a negative expression for CD44 and CD90 in porcine ADAS cells. Flow cytometric analysis also indicated differences between human and early passage porcine ADAS cell surfaces with a relatively low expression of CD29 (5 cell lines with a mean percent positive of 4.5 ± 1.7 and a range of 2.5–7.2%) and CD44 (5 cell lines with a mean percent positive of 0.66 ± 0.67 and a range of 0.0–1.8%) compared with human ADAS values of 98 ± 1 and 60 ± 15, respectively (Gronthos et al. 2001). Other cell surface proteins analyzed at early passages include CD3 (3 cell lines; 0.07 ± 0.06% positive and 0.0–0.1 range), CD8 (3 cell lines; 0.10 ± 0.10% positive and 0–0.2 range), and CD90 [5 cell lines; 12.7 ± 11.9% positive and 2.4–33 range; human ADAS geometric mean 25.96% (Zuk et al. 2002)]. Analysis of late passage (passages 5–11) porcine ADAS cell populations revealed an increased expression of CD29 (3 cell lines; 26.4 ± 7.2% positive and 21.2–34.6 range). The expression level of CD90 at late passages were 21.3 and 26.9% positive for 2 cell lines and CD44 remained low (3 cell lines; 4.1 ± 3.5% positive and 0.2–7.0 range). Later passages were also analyzed for c-Kit (CD117), which was expressed at low levels (2 cell lines; 0.3 and 0.4% positive). The characterization of adipose tissue-derived adult stem cell surface proteins present at different stages of in vitro culture from a model animal, such as the pig, could have valuable impacts on tissue engineering research. These results suggest that care should be taken when interpreting results from animal models of somatic stem cells.


2020 ◽  
Vol 21 (12) ◽  
pp. 4375
Author(s):  
Muriel Bonnet ◽  
Nicolas Kaspric ◽  
Kimberly Vonnahme ◽  
Didier Viala ◽  
Christophe Chambon ◽  
...  

Crosstalk between adipose and muscular tissues is hypothesized to regulate the number of muscular and adipose cells during fetal growth, with post-natal consequences on lean and fat masses. Such crosstalk largely remains, however, to be described. We hypothesized that a characterization of the proteomes of adipose and muscular tissues from bovine fetuses may enhance the understanding of the crosstalk between these tissues through the prediction of their secretomes and surfaceomes. Proteomic experiments have identified 751 and 514 proteins in fetal adipose tissue and muscle. These are mainly involved in the regulation of cell proliferation or differentiation, but also in pathways such as apoptosis, Wnt signalling, or cytokine-mediated signalling. Of the identified proteins, 51 adipokines, 11 myokines, and 37 adipomyokines were predicted, together with 26 adipose and 13 muscular cell surface proteins. Analysis of protein–protein interactions suggested 13 links between secreted and cell surface proteins that may contribute to the adipose–muscular crosstalk. Of these, an interaction between the adipokine plasminogen and the muscular cell surface alpha-enolase may regulate the fetal myogenesis. The in silico secretome and surfaceome analyzed herein exemplify a powerful strategy to enhance the elucidation of the crosstalk between cell types or tissues.


2020 ◽  
Vol 477 (13) ◽  
pp. 2509-2541 ◽  
Author(s):  
Yasuhiro Onogi ◽  
Ahmed Elagamy Mohamed Mahmoud Khalil ◽  
Siegfried Ussar

Adipose tissue is a central regulator of metabolism and an important pharmacological target to treat the metabolic consequences of obesity, such as insulin resistance and dyslipidemia. Among the various cellular compartments, the adipocyte cell surface is especially appealing as a drug target as it contains various proteins that when activated or inhibited promote adipocyte health, change its endocrine function and eventually maintain or restore whole-body insulin sensitivity. In addition, cell surface proteins are readily accessible by various drug classes. However, targeting individual cell surface proteins in adipocytes has been difficult due to important functions of these proteins outside adipose tissue, raising various safety concerns. Thus, one of the biggest challenges is the lack of adipose selective surface proteins and/or targeting reagents. Here, we discuss several receptor families with an important function in adipogenesis and mature adipocytes to highlight the complexity at the cell surface and illustrate the problems with identifying adipose selective proteins. We then discuss that, while no unique adipocyte surface protein might exist, how splicing, posttranslational modifications as well as protein/protein interactions can create enormous diversity at the cell surface that vastly expands the space of potentially unique epitopes and how these selective epitopes can be identified and targeted.


Author(s):  
Watt W. Webb

Plasma membrane heterogeneity is implicit in the existence of specialized cell surface organelles which are necessary for cellular function; coated pits, post and pre-synaptic terminals, microvillae, caveolae, tight junctions, focal contacts and endothelial polarization are examples. The persistence of these discrete molecular aggregates depends on localized restraint of the constituent molecules within specific domaines in the cell surface by strong intermolecular bonds and/or anchorage to extended cytoskeleton. The observed plasticity of many of organelles and the dynamical modulation of domaines induced by cellular signaling evidence evanescent intermolecular interactions even in conspicuous aggregates. There is also strong evidence that universal restraints on the mobility of cell surface proteins persist virtually everywhere in cell surfaces, not only in the discrete organelles. Diffusion of cell surface proteins is slowed by several orders of magnitude relative to corresponding protein diffusion coefficients in isolated lipid membranes as has been determined by various ensemble average methods of measurement such as fluorescence photobleaching recovery(FPR).


2021 ◽  
Vol 7 (4) ◽  
pp. 262
Author(s):  
Anuja Paudyal ◽  
Govindsamy Vediyappan

Candida auris is an emerging antifungal resistant human fungal pathogen increasingly reported in healthcare facilities. It persists in hospital environments, and on skin surfaces, and can form biofilms readily. Here, we investigated the cell surface proteins from C. auris biofilms grown in a synthetic sweat medium mimicking human skin conditions. Cell surface proteins from both biofilm and planktonic control cells were extracted with a buffer containing β-mercaptoethanol and resolved by 2-D gel electrophoresis. Some of the differentially expressed proteins were excised and identified by mass spectrometry. C. albicans orthologs Spe3p, Tdh3p, Sod2p, Ywp1p, and Mdh1p were overexpressed in biofilm cells when compared to the planktonic cells of C. auris. Interestingly, several proteins with zinc ion binding activity were detected. Nrg1p is a zinc-binding transcription factor that negatively regulates hyphal growth in C. albicans. C. auris does not produce true hypha under standard in vitro growth conditions, and the role of Nrg1p in C. auris is currently unknown. Western blot analyses of cell surface and cytosolic proteins of C. auris against anti-CalNrg1 antibody revealed the Nrg1p in both locations. Cell surface localization of Nrg1p in C. auris, an unexpected finding, was further confirmed by immunofluorescence microscopy. Nrg1p expression is uniform across all four clades of C. auris and is dependent on growth conditions. Taken together, the data indicate that C. auris produces several unique proteins during its biofilm growth, which may assist in the skin-colonizing lifestyle of the fungus during its pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document