Necking, a structural control in the location of ore deposits

1982 ◽  
Vol 1 (4) ◽  
pp. 304-325
Author(s):  
Donald Findlay
Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 171 ◽  
Author(s):  
Alain Chauvet

“Structural Control” remains a crucial point that is frequently absent in scientific and/or economic analyses of ore deposits, whatever their type and class, although a selection of references illustrates its importance [...]


2021 ◽  
pp. SP516-2021-37
Author(s):  
Julien Perret ◽  
Anne-Sylvie André-Mayer ◽  
Aurélien Eglinger ◽  
Julien Feneyrol ◽  
Alexandre Voinot ◽  
...  

AbstractIntegrating structural control on mineralisation and geochemical ore-forming processes is crucial when studying deformed ore deposits. Yet, structural and geochemical data are rarely acquired at the same scale: structural control on mineralisation is typically investigated from the district to the deposit and macroscopic scales whereas geochemical ore processes are described at the microscopic scale. The deciphering of a deformation-mineralisation history valid at every scale thus remains challenging.This study proposes a multi-scale approach that enables the reconciliation of structural and geochemical information collected at every scale, applied to the example of the Galat Sufar South gold deposit, Nubian shield, northeastern Sudan. It gathers field and laboratory information by coupling a classical petrological-structural study with high-resolution X-ray computed tomography, electron back-scattered diffraction and laser ablation inductively-coupled plasma mass spectrometry on mineralised sulphide mineral assemblages.This approach demonstrates that there is a linear control on mineralisation expressed from the district to microscopic scales at the Galat Sufar South gold deposit. We highlight the relationships between Atmur-Delgo suturing tectonics, micro-deformation of sulphide minerals, syn-pyrite recrystallisation metal remobilisation, gold liberation and ore upgrading. Our contribution therefore represents another step forward a holistic field-to-laboratory approach for the study of any other sulphide-bearing, structurally-controlled ore deposit type.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5635726


1956 ◽  
Vol 63 (1) ◽  
pp. 85-113 ◽  
Author(s):  
A. K. Temple

SynopsisThe Leadhills–Wanlockhead mining field is situated within a synclinorial belt of greywackes, bounded to the north and south by anticlinoria in which lower stratigraphical elements are exposed. The universal strike is N.E.–S.W. The southern margin of the northern anticlinorium is delimited by a strike thrust fault, inclined to the north-west. The shear zone caused by this thrust is considered to be the principal structural feature governing the localization of the ore deposits.The complex N.E.–S.W. folding and faulting, imposed during the Caledonian orogeny, is crossed by a series of intersecting joints, whose average strike is N.N.W. The majority of the mineral veins also trend N.N.W. The formation of these discordant structural features under Caledonian stress is demonstrated by the presence of N.N.W. trending Caledonian dykes.Sinistrai movement along the joint pattern, ascribed to a reorientation of the “Caledonian” stress towards an “Hercynian” direction, resulted in the formation of open spaces on the more north-westerly trending members of the joint system in the greywacke belt. This feature is considered to be the secondary structural control responsible for the localization of the ore deposits.Fifty-seven minerals were identified from the deposits. Fifteen of these minerals had not been previously recorded from the locality, including (1) a new chromian mineral; (2) a new variety, chromian leadhillite; (3) a mineral previously recorded only as an artificial product, lead hydroxyapatite; (4) phœnicochroite, not previously confirmed in the British Isles.Two periods of mineralization were distinguished. The first consisted of quartz veins with which are associated small amounts of gold, pyrite and muscovite, tentatively assigned to the Caledonian orogeny, and the second comprised the lead-zinc mineralization. The paragenetic relationships of the primary minerals of the lead-zinc mineralization indicate two generations of sulphides; the second generation is accounted for by reprecipitation of elements derived from the replacement of the first generation by late stage quartz. A study of the distribution of elements through the paragenesis suggests that some elements were derived from other than a magmatic source, and that contamination has probably played a considerable rôle in the control of the character of the gangue minerals.Evidence that the mineralizing solutions had a deep-seated origin is provided by the mineral zones and the geochemical character of the deposit. Emplacement of the minerals took place at a temperature of the order of 143°−281° C, and a depth of the order of 2000–4000 feet below the surface.The Leadhills–Wanlockhead deposits are related to other lead-zinc deposits in Britain. On the basis of geochemical assemblage and the relation to igneous activity, it is concluded that the deposits were probably derived from the top of the tholeiitic crustal layer and the base of the granitic crustal layer, and were genetically associated with the Hercynian orogeny.


Minerals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 56 ◽  
Author(s):  
Chauvet A.

The major role played by pre-existing structures in the formation of vein-style mineral deposits is demonstrated with several examples. The control of a pre-existing decollement level on the formation of a crustal extension-related (collapse) gold deposit is first illustrated in the Quadrilátero Ferrífero from Brazil. Shear zone and decollement structures were also examined and shown to control veins formation by three distinct processes: (i) re-aperture and re-using of wrench shear zones in the case of Shila gold mines (south Peru); (ii) remobilisation of metal in volcanic-hosted massive sulphide (VHMS) deposit by subsequent tectonic events and formation of a secondary stockwork controlled by structures created during this event (Iberian Pyrite Belt, Spain); (iii) formation of economic stockwork by contrasting deformation behaviours between ductile black schist versus brittle more competent dolomite (Cu-Ifri deposit, Morocco). Two examples involve changing of rheological competence within zones affected by deformation and/or alteration in order to receive the mineralisation (case studies of Achmmach, Morocco, and Mina Soriana, Spain). The last case underscores the significance of the magmatic–hydrothermal transition in the formation of mesothermal gold deposits (Bruès mine, Spain). All these examples clearly demonstrate the crucial role played by previously formed structures and/or texture in the development and formation of ore deposits.


2016 ◽  
Vol 63 (1) ◽  
pp. 19-38
Author(s):  
Cyril Okpoli ◽  
Adedibu Akingboye

AbstractGeological mapping and magnetic methods were applied for the exploration of iron ore deposits in the Akunu–Akoko area of Southwestern Nigeria for the purpose of evaluating their geological characteristics and resource potentials. A proton magnetometer measures the vertical, horizontal and total magnetic intensities in gammas. The subsurface geology was interpreted qualitatively and quantitatively. The downward continuations and second vertical derivatives, the small-sized mineralised bodies and shallow features in the study area were mapped. The faults are trending in the following directions: NE–SW, NW–SE, N–S and E–W groups, while the iron ore mineralisation is structurally controlled by two major groups of fault trends, namely, the NE–SW and NW–SE; the N–S and E–W groups are mere occurrences that do not contribute to the structural control of the iron ore mineralisation in Akunu.The upward continuation has a linear feature similar to the principal orientation of the regional faults, while Locations 2 and 3 have relatively high magnetic susceptibility zones; suspected to be iron ore deposits. The depths to the magnetic sources ranged from 25 m to about 250 m.


Sign in / Sign up

Export Citation Format

Share Document