The first fossil record of larval stages of parasitic isopods: cryptoniscus larvae preserved in Miocene amber

2016 ◽  
Vol 279 (1) ◽  
pp. 97-106 ◽  
Author(s):  
María de Lourdes Serrano-Sánchez ◽  
Christina Nagler ◽  
Carolin Haug ◽  
Joachim T. Haug ◽  
Elena Centeno-García ◽  
...  
2020 ◽  
pp. 1-42
Author(s):  
Louwrens Pieter Snyman ◽  
Michael Ohl ◽  
Christian Walter Werner Pirk ◽  
Catherine Lynne Sole

Adult Mantispidae are general predators of arthropods equipped with raptorial forelegs. The three larval instars display varying degrees of hypermetamorphic ontogeny. The larval stages exhibit a remarkable life history ranging from specialised predators of nest-building hymenopteran larvae and pupa, to specialised predators of spider-eggs, to possible generalist predators of immature insects. Noteworthy advances in our understanding of the biology of Mantispidae has come to light over the past two decades which are compiled and addressed in this review. All interactions of mantispids with other arthropods are tabled and their biology critically discussed and compared to the current classification of the taxon. Additionally, the ambigous systematics within Mantispidae and between Mantispidae and its sister groups, Rhachiberothidae and Berotidae, is reviewed. Considering the biology, systematics, distribution of higher taxonomic levels and the fossil record, the historical biogeography of the group is critically discussed with Gondwana as the epicenter of Mantispidae radiation.


Paleobiology ◽  
1980 ◽  
Vol 6 (4) ◽  
pp. 373-376 ◽  
Author(s):  
Richard R. Strathmann

In recent articles in this journal Hansen (1980) and Jablonski (1980) discussed the planktonic larval stages of fossil benthic invertebrates and the relation of type of larval development to geographic ranges, nearshore-offshore position, speciation, and extinction. The fossil record provides a view of long term consequences of types of larval development, and the emphasis of these, and other, paleobiological studies was on selection among species which are characterized by different developmental adaptations.


Parasitology ◽  
1964 ◽  
Vol 54 (2) ◽  
pp. 211-223 ◽  
Author(s):  
N. Krishna Pillai

In the present paper seven species of cymothoid isopods parasitic on the marine fishes of the Kerala coast are described. A preliminary diagnosis of three of them was published earlier (Pillai, 1954). Full descriptions of all the species are given below. The larval stages described were in all cases taken from the brood pouch. The present work forms part of a thesis for which the author was awarded the Ph.D. Degree by the Kerala University.


2015 ◽  
Vol 282 (1801) ◽  
pp. 20141912 ◽  
Author(s):  
Sean P. Modesto ◽  
Diane M. Scott ◽  
Mark J. MacDougall ◽  
Hans-Dieter Sues ◽  
David C. Evans ◽  
...  

Amniotes, tetrapods that evolved the cleidoic egg and thus independence from aquatic larval stages, appeared ca 314 Ma during the Coal Age. The rapid diversification of amniotes and other tetrapods over the course of the Late Carboniferous period was recently attributed to the fragmentation of coal-swamp rainforests ca 307 Ma. However, the amniote fossil record during the Carboniferous is relatively sparse, with ca 33% of the diversity represented by single specimens for each species. We describe here a new species of reptilian amniote that was collected from uppermost Carboniferous rocks of Prince Edward Island, Canada. Erpetonyx arsenaultorum gen. et sp. nov. is a new parareptile distinguished by 29 presacral vertebrae and autapomorphies of the carpus. Phylogenetic analyses of parareptiles reveal E. arsenaultorum as the closest relative of bolosaurids. Stratigraphic calibration of our results indicates that parareptiles began their evolutionary radiation before the close of the Carboniferous Period, and that the diversity of end-Carboniferous reptiles is 80% greater than suggested by previous work. Latest Carboniferous reptiles were still half as diverse as synapsid amniotes, a disparity that may be attributable to preservational biases, to collecting biases, to the origin of herbivory in tetrapods or any combination of these factors.


Author(s):  
G.C. Bellolio ◽  
K.S. Lohrmann ◽  
E.M. Dupré

Argopecten purpuratus is a scallop distributed in the Pacific coast of Chile and Peru. Although this species is mass cultured in both countries there is no morphological description available of the development of this bivalve except for few characterizations of some larval stages described for culture purposes. In this work veliger larvae (app. 140 pm length) were examined by the scanning electron microscope (SEM) in order to study some aspects of the organogenesis of this species.Veliger larvae were obtained from hatchery cultures, relaxed with a solution of MgCl2 and killed by slow addition of 21 glutaraldehyde (GA) in seawater (SW). They were fixed in 2% GA in calcium free artificial SW (pH 8.3), rinsed 3 times in calcium free SW, and dehydrated in a graded ethanol series. The larvae were critical point dried and mounted on double scotch tape (DST). To permit internal view, some valves were removed by slightly pressing and lifting the tip of a cactus spine wrapped with DST, The samples were coated with 20 nm gold and examined with a JEOL JSM T-300 operated at 15 KV.


2012 ◽  
Vol 39 (2) ◽  
pp. 217-233 ◽  
Author(s):  
J. David Archibald

Studies of the origin and diversification of major groups of plants and animals are contentious topics in current evolutionary biology. This includes the study of the timing and relationships of the two major clades of extant mammals – marsupials and placentals. Molecular studies concerned with marsupial and placental origin and diversification can be at odds with the fossil record. Such studies are, however, not a recent phenomenon. Over 150 years ago Charles Darwin weighed two alternative views on the origin of marsupials and placentals. Less than a year after the publication of On the origin of species, Darwin outlined these in a letter to Charles Lyell dated 23 September 1860. The letter concluded with two competing phylogenetic diagrams. One showed marsupials as ancestral to both living marsupials and placentals, whereas the other showed a non-marsupial, non-placental as being ancestral to both living marsupials and placentals. These two diagrams are published here for the first time. These are the only such competing phylogenetic diagrams that Darwin is known to have produced. In addition to examining the question of mammalian origins in this letter and in other manuscript notes discussed here, Darwin confronted the broader issue as to whether major groups of animals had a single origin (monophyly) or were the result of “continuous creation” as advocated for some groups by Richard Owen. Charles Lyell had held similar views to those of Owen, but it is clear from correspondence with Darwin that he was beginning to accept the idea of monophyly of major groups.


2020 ◽  
Vol 324 (2) ◽  
pp. 242-251
Author(s):  
L.P. Flyachinskaya ◽  
P.A. Lezin

The paper considers the development of Ciliatocardium ciliatum from the stage of straight hinge to juvenile. In the White Sea the spawning of C. ciliatum begins at the end of June, larvae at different stages of development occur in plankton until the end of September. The earliest of the larvae found had shell lengths of 123–130 µm. The paper first examined the anatomy and structure of the larval shell of C. ciliatum. During the development, the main stages of organogenesis were described and special attention was paid to the formation of the digestive and muscular systems. The digestive system begins to function when the larva reaches a size of 170–180 µm. The digestive gland has a two-blade shape and is shifted to the right side. The foot is formed at a size of 230 µm, the gill rudiments appear when the larva reaches 270 µm. The development of the larval shell and larval hinge of the mollusc is considered in detail. The development of the larval shell of C. ciliatum is similar to the development of other family members. Throughout all the larval stages, the shell has a rounded shape with a low umbos, and the prodissoconch II has a clearly visible concentric structure. The C. ciliatum larval hinge is characterized by weak differentiation and the absence of pronounced cardinal teeth typical for other Cardiidae. However, the lateral structures of the castle – ridges and flanges – are well developed. The ligament begins to form at a size of 240–250 µm and occupies a lateral position. The settlement of the cockle takes place in September in the subtidal zone. After the metamorphosis, a large radial sculpture is formed on the dissoconch and a number of small spikes are formed at the rib of the posterior shoulder.


Sign in / Sign up

Export Citation Format

Share Document