Correlation between In Vitro and In Vivo Antifungal Activities in Experimental Fluconazole-Resistant Oropharyngeal and Esophageal Candidiasis

2000 ◽  
Vol 38 (6) ◽  
pp. 2369-2373
Author(s):  
Thomas J. Walsh ◽  
Corina E. Gonzalez ◽  
Steven Piscitelli ◽  
John D. Bacher ◽  
Joanne Peter ◽  
...  
2000 ◽  
Vol 38 (6) ◽  
pp. 2369-2373 ◽  
Author(s):  
Thomas J. Walsh ◽  
Corina E. Gonzalez ◽  
Steven Piscitelli ◽  
John D. Bacher ◽  
Joanne Peter ◽  
...  

2001 ◽  
Vol 45 (2) ◽  
pp. 471-479 ◽  
Author(s):  
Vidmantas Petraitis ◽  
Ruta Petraitiene ◽  
Andreas H. Groll ◽  
Tin Sein ◽  
Robert L. Schaufele ◽  
...  

ABSTRACT V-echinocandin (VER-002; LY303366) is a semisynthetic derivative of echinocandin B and a potent inhibitor of fungal (1, 3)-β-d-glucan synthase. We studied the antifungal efficacy, the concentrations in saliva and tissue, and the safety of VER-002 at escalating dosages against experimental oropharyngeal and esophageal candidiasis caused by fluconazole-resistant Candida albicans in immunocompromised rabbits. Study groups consisted of untreated controls, animals treated with VER-002 at 1, 2.5, and 5 mg/kg of body weight/day intravenously (i.v.), animals treated with fluconazole at 2 mg/kg/day i.v., or animals treated with amphotericin B at 0.3 mg/kg/day. VER-002-treated animals showed a significant dosage-dependent clearance of C. albicans from the tongue, oropharynx, esophagus, stomach, and duodenum in comparison to that for untreated controls. VER-002 also was superior to amphotericin B and fluconazole in clearing the organism from all sites studied. These in vivo findings are consistent with the results of in vitro time-kill assays, which demonstrated that VER-002 has concentration-dependent fungicidal activity. Esophageal tissue VER-002 concentrations were dosage proportional and exceeded the MIC at all dosages. Echinocandin concentrations in saliva were greater than or equal to the MICs at all dosages. There was no elevation of serum hepatic transaminase, alkaline phosphatase, bilirubin, potassium, or creatinine levels in VER-002-treated rabbits. In summary, the echinocandin VER-002 was well tolerated, penetrated the esophagus and salivary glands, and demonstrated dosage-dependent antifungal activity against fluconazole-resistant esophageal candidiasis in immunocompromised rabbits.


2008 ◽  
Vol 52 (4) ◽  
pp. 1318-1324 ◽  
Author(s):  
Junichi Mitsuyama ◽  
Nobuhiko Nomura ◽  
Kyoko Hashimoto ◽  
Eio Yamada ◽  
Hiroshi Nishikawa ◽  
...  

ABSTRACT The in vitro and in vivo antifungal activities of T-2307, a novel arylamidine, were evaluated and compared with those of fluconazole, voriconazole, micafungin, and amphotericin B. T-2307 exhibited broad-spectrum activity against clinically significant pathogens, including Candida species (MIC range, 0.00025 to 0.0078 μg/ml), Cryptococcus neoformans (MIC range, 0.0039 to 0.0625 μg/ml), and Aspergillus species (MIC range, 0.0156 to 4 μg/ml). Furthermore, T-2307 exhibited potent activity against fluconazole-resistant and fluconazole-susceptible-dose-dependent Candida albicans strains as well as against azole-susceptible strains. T-2307 exhibited fungicidal activity against some Candida and Aspergillus species and against Cryptococcus neoformans. In mouse models of disseminated candidiasis, cryptococcosis, and aspergillosis, the 50% effective doses of T-2307 were 0.00755, 0.117, and 0.391 mg·kg−1·dose−1, respectively. This agent was considerably more active than micafungin and amphotericin B against candidiasis and than amphotericin B against cryptococcosis, and its activity was comparable to the activities of micafungin and amphotericin B against aspergillosis. The results of preclinical in vitro and in vivo evaluations performed thus far indicate that T-2307 could represent a potent injectable agent for the treatment of candidiasis, cryptococcosis, and aspergillosis.


1989 ◽  
Vol 42 (12) ◽  
pp. 1756-1762 ◽  
Author(s):  
TOSHIKAZU OKI ◽  
MINORU HIRANO ◽  
KOZO TOMATSU ◽  
KEI-ICHI NUMATA ◽  
HIDEO KAMEI

2013 ◽  
Vol 1 (1) ◽  
pp. 18-22
Author(s):  
He Sun ◽  
Xin Su ◽  
Yi Shi

Abstract Posaconazole (POS) is a new triazole drug with broad-spectrum in vitro activity against most yeasts and molds such as Candida, Cryptococcus neoformans, Aspergillus, Fusarium and Zygomycetes, as well as certain species of dimorphic fungi and endemic fungi. In immunocompetent or immunocompromised animal models with invasive fungal infections, POS has demonstrated highly effective, broad-spectrum antifungal activities. In vitro and in vivo antifungal activities of POS were superior to those of other azoles against Candida glabrata, Candida krusei, Aspergillus terrus, Fusarium and Zygomycetes. In vivo susceptibility studies have shown promising efficacy of POS against life-threatening fungal infections in animal models with different immune status and infection sites.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243197
Author(s):  
Amanda Pohlmann Bonfim ◽  
Karina Mayumi Sakita ◽  
Daniella Renata Faria ◽  
Glaucia Sayuri Arita ◽  
Franciele Abigail Vilugron Rodrigues Vendramini ◽  
...  

Vulvovaginal candidiasis (VVC) is a common vaginitis that affects women, especially in childbearing age, caused by Candida albicans in almost 80% of cases. Considering the limited drug arsenal available and the increasing fungal resistance profile, the search for new therapeutic sources with low toxicity and easy administration should be supported. Propolis has been used as a traditional medicine for multiple diseases, considering its particular composition and pharmaceutical properties that permits its wide applicability; it has also emerged as a potential antifungal agent. Thus, this study performed an in vitro and in vivo investigation into the efficacy of a new mucoadhesive thermoresponsive platform for propolis delivery (MTS-PRPe) in a preclinical murine model of VVC treatment caused by C. albicans. The methodologies involved chemical analysis, an assessment of the rheological and mucoadhesive properties of propolis formulations, in vitro and in vivo antifungal evaluations, histological evaluations and electron microscopy of the vaginal mucosa. The results demonstrated the antifungal activity of propolis extract and MTS-PRP against the standard strain and a fluconazole-resistant clinical isolate of C. albicans, in both in vitro and in vivo assays. These results were similar and even better, depending on the propolis concentration, when compared to nystatin. Thus, the formulation containing propolis exhibited good performance against C. albicans in a vulvovaginal candidiasis experimental model, representing a promising opportunity for the treatment of this infection.


2020 ◽  
pp. 1379-1384
Author(s):  
Alex Rodrigues Silva Caetano ◽  
Sara Maria Chalfoun ◽  
Mario Lúcio Vilela Resende ◽  
Caroline Lima Angélico ◽  
Wilder Douglas Santiago ◽  
...  

Essential oils, also known as volatile oils, are substances produced through the secondary metabolism of plants. In this study, we determined the chemical composition and the in vitro and in vivo antifungal activity of the essential oils from four species of Eucalyptus, Eucalyptus citriodora, Eucalyptus camaldulensis, Eucalyptus grandis and Eucalyptus microcorys, against the Hemileia vastatrix fungus. The essential oils from these four species of Eucalyptus were extracted from their leaves by the hydrodistillation technique using a modified Clevenger apparatus. The chemical characterization was performed by gas chromatography coupled with a mass spectrometer detector and by gas chromatography using a flame ionization detector. The antifungal activities of the essential oils against H. vastatrix were studied by evaluating the percentage of spore germination using the microdilution test for in vitro assays. The curative and preventive effects were evaluated in in vivo tests. The principal constituents of the essential oil from E. citriodora were citronellal, citronellol and isopulegol, while E. camaldulensis produced 1,8-cineole, α-terpineol and α-pinene. 1,8-cineole, α-pinene and α-terpineol were obtained from E. grandis and 1,8-cineole, α-pinene and trans-pinocarveol were the principal components in the essential oil of E. microcorys. In vitro and in vivo antifungal activities against the fungus under study were observed for most of the essential oils, except the essential oil from E. microcorys, for which no preventive antifungal activity was observed. Only the curing of infection by the H. vastatrix fungus was observed with this oil.


Sign in / Sign up

Export Citation Format

Share Document