Growth Polarity

Author(s):  
Michelle Momany ◽  
Yainitza Hernández-Rodríguez
Keyword(s):  
2020 ◽  
Vol 133 (18) ◽  
pp. jcs244392
Author(s):  
K. Adam Bohnert ◽  
Anthony M. Rossi ◽  
Quan-Wen Jin ◽  
Jun-Song Chen ◽  
Kathleen L. Gould

ABSTRACTCellular polarization underlies many facets of cell behavior, including cell growth. The rod-shaped fission yeast Schizosaccharomyces pombe is a well-established, genetically tractable system for studying growth polarity regulation. S. pombe cells elongate at their two cell tips in a cell cycle-controlled manner, transitioning from monopolar to bipolar growth in interphase when new ends established by the most recent cell division begin to extend. We previously identified cytokinesis as a critical regulator of new end growth and demonstrated that Fic1, a cytokinetic factor, is required for normal polarized growth at new ends. Here, we report that Fic1 is phosphorylated on two C-terminal residues, which are each targeted by multiple protein kinases. Endogenously expressed Fic1 phosphomutants cannot support proper bipolar growth, and the resultant defects facilitate the switch into an invasive pseudohyphal state. Thus, phosphoregulation of Fic1 links the completion of cytokinesis to the re-establishment of polarized growth in the next cell cycle. These findings broaden the scope of signaling events that contribute to regulating S. pombe growth polarity, underscoring that cytokinetic factors constitute relevant targets of kinases affecting new end growth.This article has an associated First Person interview with Anthony M. Rossi, joint first author of the paper.


2016 ◽  
Vol 114 (6) ◽  
pp. 66003
Author(s):  
Ping Yang ◽  
Qian Gao ◽  
Zhen-Peng Hu ◽  
Li-Xin Zhang

1999 ◽  
Vol 262 (1) ◽  
pp. 46-54 ◽  
Author(s):  
G. M. Truesdell ◽  
C. Jones ◽  
T. Holt ◽  
G. Henderson ◽  
M. B. Dickman

1998 ◽  
Vol 111 (2) ◽  
pp. 149-159 ◽  
Author(s):  
D. Hirata ◽  
K. Nakano ◽  
M. Fukui ◽  
H. Takenaka ◽  
T. Miyakawa ◽  
...  

To identify the genes involved in cell morphogenesis in Schizosaccharomyces pombe, we screened for the genes that cause aberrant cell morphology by overexpression. The isolated genes were classified on the basis of morphology conferred. One of the genes causing a rounded morphology was identified as the rho2+ gene encoding a small GTP-binding protein. The overexpression of rho2+ resulted in a randomized distribution of cortical F-actin and formation of a thick cell wall. Analyses using cdc mutants suggested that the overexpression of rho2+ prevents the establishment of growth polarity in G1. The rho2+ gene was not essential, but among cells deleted for rho2+, those with an irregular shape were observed. The disruptant also showed a defect in cell wall integrity. An HA-Rho2 expressed in the cell was suggested to be present as a membrane-bound form by a cell fractionation experiment. A GFP-Rho2 was localized at the growing end(s) of the cell and the septation site. The localization of GFP-Rho2 during interphase was partially dependent on sts5+. These results indicate that Rho2 is involved in cell morphogenesis, control of cell wall integrity, control of growth polarity, and maintenance of growth direction. Analysis of functional overlapping between Rho2 and Rho1 revealed that their functions are distinct from each other, with partial overlapping.


Sign in / Sign up

Export Citation Format

Share Document