Signal Integration and Virulence Gene Regulation in Staphylococcus aureus

Author(s):  
Edward Geisinger ◽  
Richard P. Novick
2020 ◽  
Vol 203 (2) ◽  
pp. e00495-20
Author(s):  
Mei G. Lei ◽  
Chia Y. Lee

ABSTRACTStaphylococcus aureus capsule polysaccharide is an important antiphagocytic virulence factor. The cap genes are regulated at the promoter element (Pcap) upstream of the cap operon. Pcap, which consists of a dominant SigB-dependent promoter and a weaker upstream SigA-dependent promoter, is activated by global regulator MgrA. How MgrA activates capsule is unclear. Here, we showed that MgrA directly bound to the Pcap region and affected the SigA-dependent promoter. Interestingly, an electrophoretic mobility shift assay showed that MgrA bound to a large region of Pcap, mainly downstream of the SigA-dependent promoter. We further showed that the ArlRS two-component system and the Agr quorum sensing system activated capsule primarily through MgrA in the early growth phases.IMPORTANCE The virulence of Staphylococcus aureus depends on the expression of various virulence factors, which is governed by a complex regulatory network. We have been using capsule as a model virulence factor to study virulence gene regulation in S. aureus. MgrA is one of the regulators of capsule and has a major effect on capsule production. However, how MgrA regulates capsule genes is not understood. In this study, we were able to define the mechanism involving MgrA regulation of capsule. In addition, we also delineated the role of MgrA in capsule regulatory pathways involving the key virulence regulators Agr and Arl. This study further advances our understanding of virulence gene regulation in S. aureus, an important human pathogen.


mBio ◽  
2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Dharanesh Gangaiah ◽  
Maria Labandeira-Rey ◽  
Xinjun Zhang ◽  
Kate R. Fortney ◽  
Sheila Ellinger ◽  
...  

ABSTRACTTo adapt to stresses encountered in stationary phase, Gram-negative bacteria utilize the alternative sigma factor RpoS. However, some species lack RpoS; thus, it is unclear how stationary-phase adaptation is regulated in these organisms. Here we defined the growth-phase-dependent transcriptomes ofHaemophilus ducreyi, which lacks an RpoS homolog. Compared to mid-log-phase organisms, cells harvested from the stationary phase upregulated genes encoding several virulence determinants and a homolog ofhfq. Insertional inactivation ofhfqaltered the expression of ~16% of theH. ducreyigenes. Importantly, there were a significant overlap and an inverse correlation in the transcript levels of genes differentially expressed in thehfqinactivation mutant relative to its parent and the genes differentially expressed in stationary phase relative to mid-log phase in the parent. Inactivation ofhfqdownregulated genes in theflp-tadandlspB-lspA2operons, which encode several virulence determinants. To comply with FDA guidelines for human inoculation experiments, an unmarkedhfqdeletion mutant was constructed and was fully attenuated for virulence in humans. Inactivation or deletion ofhfqdownregulated Flp1 and impaired the ability ofH. ducreyito form microcolonies, downregulated DsrA and renderedH. ducreyiserum susceptible, and downregulated LspB and LspA2, which allowH. ducreyito resist phagocytosis. We propose that, in the absence of an RpoS homolog, Hfq serves as a major contributor ofH. ducreyistationary-phase and virulence gene regulation. The contribution of Hfq to stationary-phase gene regulation may have broad implications for other organisms that lack an RpoS homolog.IMPORTANCEPathogenic bacteria encounter a wide range of stresses in their hosts, including nutrient limitation; the ability to sense and respond to such stresses is crucial for bacterial pathogens to successfully establish an infection. Gram-negative bacteria frequently utilize the alternative sigma factor RpoS to adapt to stresses and stationary phase. However, homologs of RpoS are absent in some bacterial pathogens, includingHaemophilus ducreyi, which causes chancroid and facilitates the acquisition and transmission of HIV-1. Here, we provide evidence that, in the absence of an RpoS homolog, Hfq serves as a major contributor of stationary-phase gene regulation and that Hfq is required forH. ducreyito infect humans. To our knowledge, this is the first study describing Hfq as a major contributor of stationary-phase gene regulation in bacteria and the requirement of Hfq for the virulence of a bacterial pathogen in humans.


2001 ◽  
Vol 33 (3) ◽  
pp. 178-185 ◽  
Author(s):  
Mark Clements ◽  
Sofia Eriksson ◽  
Dilek Tezcan-Merdol ◽  
Jay C D Hinton ◽  
Mikael Rhen

2017 ◽  
Vol 85 (12) ◽  
Author(s):  
Yogitha N. Srikhanta ◽  
Ka Yee Fung ◽  
Georgina L. Pollock ◽  
Vicki Bennett-Wood ◽  
Benjamin P. Howden ◽  
...  

ABSTRACT Kingella kingae is a common etiological agent of pediatric osteoarticular infections. While current research has expanded our understanding of K. kingae pathogenesis, there is a paucity of knowledge about host-pathogen interactions and virulence gene regulation. Many host-adapted bacterial pathogens contain phase variable DNA methyltransferases (mod genes), which can control expression of a regulon of genes (phasevarion) through differential methylation of the genome. Here, we identify a phase variable type III mod gene in K. kingae, suggesting that phasevarions operate in this pathogen. Phylogenetic studies revealed that there are two active modK alleles in K. kingae. Proteomic analysis of secreted and surface-associated proteins, quantitative PCR, and a heat shock assay comparing the wild-type modK1 ON (i.e., in frame for expression) strain to a modK1 OFF (i.e., out of frame) strain revealed three virulence-associated genes under ModK1 control. These include the K. kingae toxin rtxA and the heat shock genes groEL and dnaK. Cytokine expression analysis showed that the interleukin-8 (IL-8), IL-1β, and tumor necrosis factor responses of THP-1 macrophages were lower in the modK1 ON strain than in the modK1::kan mutant. This suggests that the ModK1 phasevarion influences the host inflammatory response and provides the first evidence of this phase variable epigenetic mechanism of gene regulation in K. kingae.


Genetics ◽  
2015 ◽  
Vol 200 (3) ◽  
pp. 807-819 ◽  
Author(s):  
Javier López-Garrido ◽  
Elena Puerta-Fernández ◽  
Ignacio Cota ◽  
Josep Casadesús

2009 ◽  
Vol 191 (9) ◽  
pp. 2953-2963 ◽  
Author(s):  
Konstanze Pohl ◽  
Patrice Francois ◽  
Ludwig Stenz ◽  
Frank Schlink ◽  
Tobias Geiger ◽  
...  

ABSTRACT The repressor CodY is reported to inhibit metabolic genes mainly involved in nitrogen metabolism. We analyzed codY mutants from three unrelated Staphylococcus aureus strains (Newman, UAMS-1, and RN1HG). The mutants grew more slowly than their parent strains in a chemically defined medium. However, only codY mutants were able to grow in medium lacking threonine. An excess of isoleucine resulted in growth inhibition in the wild type but not in the codY mutants, indicating that isoleucine plays a role in CodY-dependent repression. Prototypic CodY-repressed genes including the virulence regulator agr are repressed after up-shift with isoleucine. The CodY-dependent repression of agr is consistent with the concomitant influence of CodY on typical agr-regulated genes such as cap, spa, fnbA, and coa. However, some of these virulence genes (e.g., cap, fnbA, and spa) were also regulated by CodY in an agr-negative background. Microarray analysis revealed that the large majority of CodY-repressed genes were involved in amino acid metabolism; CodY-activated genes were mainly involved in nucleotide metabolism or virulence. In summary, CodY in S. aureus not only acts as a repressor for genes involved in nitrogen metabolism but also contributes to virulence gene regulation by supporting as well as substituting for agr function.


Sign in / Sign up

Export Citation Format

Share Document