regulatory link
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 16)

H-INDEX

27
(FIVE YEARS 1)

Amino Acids ◽  
2021 ◽  
Author(s):  
James M. Phang

AbstractIn the 35 years since the introduction of the “proline cycle”, its relevance to human tumors has been widely established. These connections are based on a variety of mechanisms discovered by many laboratories and have stimulated the search for small molecule inhibitors to treat cancer or metastases. In addition, the multi-layered connections of the proline cycle and the role of proline and hydroxyproline in collagen provide an important regulatory link between the extracellular matrix and metabolism.


Oncogene ◽  
2021 ◽  
Author(s):  
Christina Demetriadou ◽  
Anastasia Raoukka ◽  
Evelina Charidemou ◽  
Constantine Mylonas ◽  
Christina Michael ◽  
...  

AbstractAberrant function of epigenetic modifiers plays an important role not only in the progression of cancer but also the development of drug resistance. N-alpha-acetyltransferase 40 (NAA40) is a highly specific epigenetic enzyme catalyzing the transfer of an acetyl moiety at the N-terminal end of histones H4 and H2A. Recent studies have illustrated the essential oncogenic role of NAA40 in various cancer types but its role in chemoresistance remains unclear. Here, using transcriptomic followed by metabolomic analysis in colorectal cancer (CRC) cells, we demonstrate that NAA40 controls key one-carbon metabolic genes and corresponding metabolites. In particular, through its acetyltransferase activity NAA40 regulates the methionine cycle thereby affecting global histone methylation and CRC cell survival. Importantly, NAA40-mediated metabolic rewiring promotes resistance of CRC cells to antimetabolite chemotherapy in vitro and in xenograft models. Specifically, NAA40 stimulates transcription of the one-carbon metabolic gene thymidylate synthase (TYMS), whose product is targeted by 5-fluorouracil (5-FU) and accordingly in primary CRC tumours NAA40 expression associates with TYMS levels and poorer 5-FU response. Mechanistically, NAA40 activates TYMS by preventing enrichment of repressive H2A/H4S1ph at the nuclear periphery. Overall, these findings define a novel regulatory link between epigenetics and cellular metabolism mediated by NAA40, which is harnessed by cancer cells to evade chemotherapy.


2021 ◽  
Author(s):  
Albert La Spada ◽  
Mary Rose Branch ◽  
Cynthia Hsu ◽  
Kohta Ohnishi ◽  
Elian Lee ◽  
...  

mTORC1 is the key rheostat controlling cellular metabolic state. Of the various inputs to mTORC1, the most potent effector of intracellular nutrient status is amino acid supply. Despite an established role for MAP4K3 in promoting mTORC1 activation in the presence of amino acids, the signaling pathway by which MAP4K3 controls mTORC1 activation remains unknown. Here we examined the process of MAP4K3 activation of mTORC1 and found that MAP4K3 represses the LKB1-AMPK pathway to prevent TSC1/2 complex inactivation of Rheb. When we sought the regulatory link between MAP4K3 and LKB1 inhibition, we discovered that MAP4K3 physically interacts with the master nutrient regulatory factor Sirtuin-1 and phosphorylates Sirtuin-1 to repress LKB1 activation. Our results reveal the existence of a novel signaling pathway linking amino acid satiety with MAP4K3-dependent suppression of SIRT1 to inactivate the repressive LKB1-AMPK pathway and thereby potently activate the mTORC1 complex to dictate the metabolic disposition of the cell.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Samuel Watson ◽  
Na Li ◽  
Yiting Ye ◽  
Feijie Wu ◽  
Qihua Ling ◽  
...  

The chloroplast proteome contains thousands of different proteins that are encoded by the nuclear genome. These proteins are imported into the chloroplast via the action of the TOC translocase and associated downstream systems. Our recent work has revealed that the stability of the TOC complex is dynamically regulated by the ubiquitin-dependent chloroplast-associated protein degradation (CHLORAD) pathway. Here, we demonstrate that the TOC complex is also regulated by the SUMO system. Arabidopsis mutants representing almost the entire SUMO conjugation pathway can partially suppress the phenotype of ppi1, a pale-yellow mutant lacking the Toc33 protein. This suppression is linked to increased abundance of TOC proteins and improvements in chloroplast development. Moreover, data from molecular and biochemical experiments support a model in which the SUMO system directly regulates TOC protein stability. Thus, we have identified a regulatory link between the SUMO system and the chloroplast protein import machinery.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Gábor Hajdú ◽  
Eszter Gecse ◽  
István Taisz ◽  
István Móra ◽  
Csaba Sőti

Abstract Background Recognition of stress and mobilization of adequate “fight-or-flight” responses is key for survival and health. Previous studies have shown that exposure of Caenorhabditis elegans to pathogens or toxins simultaneously stimulates cellular stress and detoxification responses and aversive behavior. However, whether a coordinated regulation exists between cytoprotective stress responses and behavioral defenses remains unclear. Results Here, we show that exposure of C. elegans to high concentrations of naturally attractive food-derived odors, benzaldehyde and diacetyl, induces toxicity and food avoidance behavior. Benzaldehyde preconditioning activates systemic cytoprotective stress responses involving DAF-16/FOXO, SKN-1/Nrf2, and Hsp90 in non-neuronal cells, which confer both physiological (increased survival) and behavioral tolerance (reduced food avoidance) to benzaldehyde exposure. Benzaldehyde preconditioning also elicits behavioral cross-tolerance to the structurally similar methyl-salicylate, but not to the structurally unrelated diacetyl. In contrast, diacetyl preconditioning augments diacetyl avoidance, weakens physiological diacetyl tolerance, and does not induce apparent molecular defenses. The inter-tissue connection between cellular and behavioral defenses is mediated by JNK-like stress-activated protein kinases and the neuropeptide Y receptor NPR-1. Reinforcement of the stressful experiences using spaced training forms stable stress-specific memories. Memory retrieval by the olfactory cues leads to avoidance of food contaminated by diacetyl and context-dependent behavioral decision to avoid benzaldehyde only if there is an alternative, food-indicative odor. Conclusions Our study reveals a regulatory link between conserved cytoprotective stress responses and behavioral avoidance, which underlies “fight-or-flight” responses and facilitates self-protection in real and anticipated stresses. These findings imply that variations in the efficiency of physiological protection during past episodes of stress might shape current behavioral decisions. Graphical abstract


2021 ◽  
Author(s):  
Fatima Cairrao ◽  
Cristiana C Santos ◽  
Adrien Le Thomas ◽  
Scot Marsters ◽  
Avi Ashkenazi ◽  
...  

SUMMARYThe unfolded protein response (UPR) maintains homeostasis of the endoplasmic reticulum(ER). Residing in the ER membrane, the UPR mediator Ire1 deploys its cytoplasmic kinase-endoribonuclease domain to activate the key UPR transcription factor Xbp1 through non-conventional splicing of Xbp1 mRNA. Ire1 also degrades diverse ER-targeted mRNAs through regulated Ire1-dependent decay (RIDD), but how it spares Xbp1 mRNA from this decay is unknown. We identified binding sites for the RNA-binding protein Pumilio in the 3’UTR Drosophila Xbp1. In the developing Drosophila eye, Pumilio bound both the Xbp1unspliced and Xbp1spliced mRNAs, but only Xbp1spliced was stabilized by Pumilio. Furthermore, Pumilio displayed Ire1 kinase-dependent phosphorylation during ER stress, which was required for its stabilization of Xbp1spliced. Human IRE1 could directly phosphorylate Pumilio, and phosphorylated Pumilio protected Xbp1spliced mRNA against RIDD. Thus, Ire1-mediated phosphorylation enables Pumilio to shield Xbp1spliced from RIDD. These results uncover an important and unexpected regulatory link between an RNA-binding protein and the UPR.


2020 ◽  
Author(s):  
Jonathan Plitnick ◽  
Fabienne F. V. Chevance ◽  
Anne Stringer ◽  
Kelly T. Hughes ◽  
Joseph T. Wade

FliA is a broadly conserved σ factor that directs transcription of genes involved in flagellar motility. We previously identified FliA-transcribed genes in Escherichia coli and Salmonella enterica serovar Typhimurium, and we showed that E. coli FliA transcribes many unstable, non-coding RNAs from intragenic promoters. Here, we show that FliA in S. Typhimurium also directs transcription of large numbers of unstable, non-coding RNAs from intragenic promoters, and we identify two previously unreported FliA-transcribed protein-coding genes. One of these genes, sdiA, encodes a transcription factor that responds to quorum sensing signals produced by other bacteria. We show that FliA-dependent transcription of sdiA is required for SdiA activity, highlighting a regulatory link between flagellar motility and intercellular communication. IMPORTANCE Initiation of bacterial transcription requires association of a σ factor with the core RNA polymerase to facilitate sequence-specific recognition of promoter elements. FliA is a widely conserved σ factor that directs transcription of genes involved in flagellar motility. We previously showed that Escherichia coli FliA transcribes many unstable, non-coding RNAs from promoters within genes. Here, we demonstrate the same phenomenon in Salmonella Typhimurium. We also show that S. Typhimurium FliA directs transcription of the sdiA gene, which encodes a transcription factor that responds to quorum sensing signals produced by other bacteria. FliA-dependent transcription of sdiA is required for transcriptional control of SdiA target genes, highlighting a regulatory link between flagellar motility and intercellular communication.


2020 ◽  
Vol 48 (21) ◽  
pp. 12252-12268
Author(s):  
Małgorzata Cieśla ◽  
Tomasz W Turowski ◽  
Marcin Nowotny ◽  
David Tollervey ◽  
Magdalena Boguta

Abstract The biogenesis of eukaryotic RNA polymerases is poorly understood. The present study used a combination of genetic and molecular approaches to explore the assembly of RNA polymerase III (Pol III) in yeast. We identified a regulatory link between Rbs1, a Pol III assembly factor, and Rpb10, a small subunit that is common to three RNA polymerases. Overexpression of Rbs1 increased the abundance of both RPB10 mRNA and the Rpb10 protein, which correlated with suppression of Pol III assembly defects. Rbs1 is a poly(A)mRNA-binding protein and mutational analysis identified R3H domain to be required for mRNA interactions and genetic enhancement of Pol III biogenesis. Rbs1 also binds to Upf1 protein, a key component in nonsense-mediated mRNA decay (NMD) and levels of RPB10 mRNA were increased in a upf1Δ strain. Genome-wide RNA binding by Rbs1 was characterized by UV cross-linking based approach. We demonstrated that Rbs1 directly binds to the 3′ untranslated regions (3′UTRs) of many mRNAs including transcripts encoding Pol III subunits, Rpb10 and Rpc19. We propose that Rbs1 functions by opposing mRNA degradation, at least in part mediated by NMD pathway. Orthologues of Rbs1 protein are present in other eukaryotes, including humans, suggesting that this is a conserved regulatory mechanism.


2020 ◽  
Author(s):  
Jonathan Plitnick ◽  
Fabienne F.V. Chevance ◽  
Anne Stringer ◽  
Kelly T. Hughes ◽  
Joseph T. Wade

ABSTRACTFliA is a broadly conserved σ factor that directs transcription of genes involved in flagellar motility. We previously identified FliA-transcribed genes in Escherichia coli and Salmonella enterica serovar Typhimurium, and we showed that E. coli FliA transcribes many unstable, non-coding RNAs from intragenic promoters. Here, we show that FliA in S. Typhimurium also directs transcription of large numbers of unstable, non-coding RNAs from intragenic promoters, and we identify two previously unreported FliA-transcribed protein-coding genes. One of these genes, sdiA, encodes a transcription factor that responds to quorum sensing signals produced by other bacteria. We show that FliA-dependent transcription of sdiA is required for SdiA activity, highlighting a regulatory link between flagellar motility and intercellular communication.IMPORTANCEInitiation of bacterial transcription requires association of a σ factor with the core RNA polymerase to facilitate sequence-specific recognition of promoter elements. FliA is a widely conserved σ factor that directs transcription of genes involved in flagellar motility. We previously showed that Escherichia coli FliA transcribes many unstable, non-coding RNAs from promoters within genes. Here, we demonstrate the same phenomenon in Salmonella Typhimurium. We also show that S. Typhimurium FliA directs transcription of the sdiA gene, which encodes a transcription factor that responds to quorum sensing signals produced by other bacteria. FliA-dependent transcription of sdiA is required for transcriptional control of SdiA target genes, highlighting a regulatory link between flagellar motility and intercellular communication.


2020 ◽  
Author(s):  
Samuel Watson ◽  
Na Li ◽  
Feijie Wu ◽  
Qihua Ling ◽  
R. Paul Jarvis

AbstractThe chloroplast proteome contains thousands of different proteins that are encoded by the nuclear genome. These proteins are imported into the chloroplast via the action of the TOC translocase and associated downstream systems. Our recent work has revealed that the stability of the TOC complex is dynamically regulated via the ubiquitin-dependent chloroplast-associated protein degradation (CHLORAD) pathway. Here, we demonstrate that the stability of the TOC complex is also regulated by the SUMO system. Arabidopsis mutants representing almost the entire SUMO conjugation pathway can partially suppress the phenotype of ppi1, a pale yellow mutant lacking the Toc33 protein. This suppression is linked to increased stability of TOC proteins and enhanced chloroplast development. In addition, we demonstrate using molecular and biochemical experiments that the SUMO system directly targets TOC proteins. Thus, we have identified a regulatory link between the SUMO system and chloroplast protein import.


Sign in / Sign up

Export Citation Format

Share Document