scholarly journals MgrA Activates Staphylococcal Capsule via SigA-Dependent Promoter

2020 ◽  
Vol 203 (2) ◽  
pp. e00495-20
Author(s):  
Mei G. Lei ◽  
Chia Y. Lee

ABSTRACTStaphylococcus aureus capsule polysaccharide is an important antiphagocytic virulence factor. The cap genes are regulated at the promoter element (Pcap) upstream of the cap operon. Pcap, which consists of a dominant SigB-dependent promoter and a weaker upstream SigA-dependent promoter, is activated by global regulator MgrA. How MgrA activates capsule is unclear. Here, we showed that MgrA directly bound to the Pcap region and affected the SigA-dependent promoter. Interestingly, an electrophoretic mobility shift assay showed that MgrA bound to a large region of Pcap, mainly downstream of the SigA-dependent promoter. We further showed that the ArlRS two-component system and the Agr quorum sensing system activated capsule primarily through MgrA in the early growth phases.IMPORTANCE The virulence of Staphylococcus aureus depends on the expression of various virulence factors, which is governed by a complex regulatory network. We have been using capsule as a model virulence factor to study virulence gene regulation in S. aureus. MgrA is one of the regulators of capsule and has a major effect on capsule production. However, how MgrA regulates capsule genes is not understood. In this study, we were able to define the mechanism involving MgrA regulation of capsule. In addition, we also delineated the role of MgrA in capsule regulatory pathways involving the key virulence regulators Agr and Arl. This study further advances our understanding of virulence gene regulation in S. aureus, an important human pathogen.

2015 ◽  
Vol 197 (23) ◽  
pp. 3666-3675 ◽  
Author(s):  
Mei G. Lei ◽  
Chia Y. Lee

ABSTRACTStaphylococcus aureuscapsule is an important virulence factor that is regulated by a large number of regulators. Capsule genes are expressed from a major promoter upstream of thecapoperon. A 10-bp inverted repeat (IR) located 13 bp upstream of the −35 region of the promoter was previously shown to affect capsule gene transcription. However, little is known about transcriptional activation of thecappromoter. To search for potential proteins which directly interact with thecappromoter region (Pcap), we directly analyzed the proteins interacting with the PcapDNA fragment from shifted gel bands identified by electrophoretic mobility shift assay. One of these regulators, RbsR, was further characterized and found to positively regulatecapgene expression by specifically binding to thecappromoter region. Footprinting analyses showed that RbsR protected a DNA region encompassing the 10-bp IR. Our results further showed thatrbsRwas directly controlled by SigB and that RbsR was a repressor of therbsUDKoperon, involved in ribose uptake and phosphorylation. The repression ofrbsUDKby RbsR could be derepressed byd-ribose. However,d-ribose did not affect RbsR activation of capsule.IMPORTANCEStaphylococcus aureusis an important human pathogen which produces a large number of virulence factors. We have been using capsule as a model virulence factor to study virulence regulation. Although many capsule regulators have been identified, the mechanism of regulation of most of these regulators is unknown. We show here that RbsR activates capsule by direct promoter binding and that SigB is required for the expression ofrbsR. These results define a new pathway wherein SigB activates capsule through RbsR. Our results further demonstrate that RbsR inhibits therbsoperon involved in ribose utilization, thereby providing an example of coregulation of metabolism and virulence inS. aureus. Thus, this study further advances our understanding of staphylococcal virulence regulation.


mBio ◽  
2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Dharanesh Gangaiah ◽  
Maria Labandeira-Rey ◽  
Xinjun Zhang ◽  
Kate R. Fortney ◽  
Sheila Ellinger ◽  
...  

ABSTRACTTo adapt to stresses encountered in stationary phase, Gram-negative bacteria utilize the alternative sigma factor RpoS. However, some species lack RpoS; thus, it is unclear how stationary-phase adaptation is regulated in these organisms. Here we defined the growth-phase-dependent transcriptomes ofHaemophilus ducreyi, which lacks an RpoS homolog. Compared to mid-log-phase organisms, cells harvested from the stationary phase upregulated genes encoding several virulence determinants and a homolog ofhfq. Insertional inactivation ofhfqaltered the expression of ~16% of theH. ducreyigenes. Importantly, there were a significant overlap and an inverse correlation in the transcript levels of genes differentially expressed in thehfqinactivation mutant relative to its parent and the genes differentially expressed in stationary phase relative to mid-log phase in the parent. Inactivation ofhfqdownregulated genes in theflp-tadandlspB-lspA2operons, which encode several virulence determinants. To comply with FDA guidelines for human inoculation experiments, an unmarkedhfqdeletion mutant was constructed and was fully attenuated for virulence in humans. Inactivation or deletion ofhfqdownregulated Flp1 and impaired the ability ofH. ducreyito form microcolonies, downregulated DsrA and renderedH. ducreyiserum susceptible, and downregulated LspB and LspA2, which allowH. ducreyito resist phagocytosis. We propose that, in the absence of an RpoS homolog, Hfq serves as a major contributor ofH. ducreyistationary-phase and virulence gene regulation. The contribution of Hfq to stationary-phase gene regulation may have broad implications for other organisms that lack an RpoS homolog.IMPORTANCEPathogenic bacteria encounter a wide range of stresses in their hosts, including nutrient limitation; the ability to sense and respond to such stresses is crucial for bacterial pathogens to successfully establish an infection. Gram-negative bacteria frequently utilize the alternative sigma factor RpoS to adapt to stresses and stationary phase. However, homologs of RpoS are absent in some bacterial pathogens, includingHaemophilus ducreyi, which causes chancroid and facilitates the acquisition and transmission of HIV-1. Here, we provide evidence that, in the absence of an RpoS homolog, Hfq serves as a major contributor of stationary-phase gene regulation and that Hfq is required forH. ducreyito infect humans. To our knowledge, this is the first study describing Hfq as a major contributor of stationary-phase gene regulation in bacteria and the requirement of Hfq for the virulence of a bacterial pathogen in humans.


2017 ◽  
Vol 85 (12) ◽  
Author(s):  
Yogitha N. Srikhanta ◽  
Ka Yee Fung ◽  
Georgina L. Pollock ◽  
Vicki Bennett-Wood ◽  
Benjamin P. Howden ◽  
...  

ABSTRACT Kingella kingae is a common etiological agent of pediatric osteoarticular infections. While current research has expanded our understanding of K. kingae pathogenesis, there is a paucity of knowledge about host-pathogen interactions and virulence gene regulation. Many host-adapted bacterial pathogens contain phase variable DNA methyltransferases (mod genes), which can control expression of a regulon of genes (phasevarion) through differential methylation of the genome. Here, we identify a phase variable type III mod gene in K. kingae, suggesting that phasevarions operate in this pathogen. Phylogenetic studies revealed that there are two active modK alleles in K. kingae. Proteomic analysis of secreted and surface-associated proteins, quantitative PCR, and a heat shock assay comparing the wild-type modK1 ON (i.e., in frame for expression) strain to a modK1 OFF (i.e., out of frame) strain revealed three virulence-associated genes under ModK1 control. These include the K. kingae toxin rtxA and the heat shock genes groEL and dnaK. Cytokine expression analysis showed that the interleukin-8 (IL-8), IL-1β, and tumor necrosis factor responses of THP-1 macrophages were lower in the modK1 ON strain than in the modK1::kan mutant. This suggests that the ModK1 phasevarion influences the host inflammatory response and provides the first evidence of this phase variable epigenetic mechanism of gene regulation in K. kingae.


2014 ◽  
Vol 59 (2) ◽  
pp. 1352-1355 ◽  
Author(s):  
Jinfeng Hu ◽  
Xu Zhang ◽  
Xiaoyu Liu ◽  
Chuan Chen ◽  
Baolin Sun

ABSTRACTPoint mutations with unclear molecular mechanisms are often associated with vancomycin resistance inStaphylococcus aureus. Here, we observed that thewalK(G223D) mutation caused decreased expression of genes associated with cell wall metabolism, decreased autolytic activity, thickened cell walls, and reduced vancomycin susceptibility. A phosphorylation assay showed that WalK (G223D) exhibited reduced autophosphorylation, which led to reduced phosphorylation of WalR. An electrophoretic mobility shift assay indicated that WalK (G223D)-phosphorylated WalR had a reduced capacity to bind to theatlApromoter.


2014 ◽  
Vol 83 (3) ◽  
pp. 1019-1029 ◽  
Author(s):  
Julienne C. Kaiser ◽  
Sameha Omer ◽  
Jessica R. Sheldon ◽  
Ian Welch ◽  
David E. Heinrichs

The branched-chain amino acids (BCAAs; Ile, Leu, and Val) not only are important nutrients for the growth ofStaphylococcus aureusbut also are corepressors for CodY, which regulates virulence gene expression, implicating BCAAs as an important link between the metabolic state of the cell and virulence. BCAAs are either synthesized intracellularly or acquired from the environment.S. aureusencodes three putative BCAA transporters, designated BrnQ1, BrnQ2, and BrnQ3; their functions have not yet been formally tested. In this study, we mutated all threebrnQparalogs so as to characterize their substrate specificities and their roles in growthin vitroandin vivo. We demonstrated that in the community-associated, methicillin-resistantS. aureus(CA-MRSA) strain USA300, BrnQ1 is involved in uptake of all three BCAAs, BrnQ2 transports Ile, and BrnQ3 does not have a significant role in BCAA transport under the conditions tested. Of the three, only BrnQ1 is essential for USA300 to grow in a chemically defined medium that is limited for Leu or Val. Interestingly, we observed that abrnQ2mutant grew better than USA300 in media limited for Leu and Val, owing to the fact that this mutation leads to overexpression ofbrnQ1. In a murine infection model, thebrnQ1mutant was attenuated, but in contrast,brnQ2mutants had significantly increased virulence compared to that of USA300, a phenotype we suggest is at least partially linked to enhancedin vivoscavenging of Leu and Val through BrnQ1. These data uncover a hitherto-undiscovered connection between nutrient acquisition and virulence in CA-MRSA.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaolong Shao ◽  
Weitong Zhang ◽  
Mubarak Ishaq Umar ◽  
Hei Yuen Wong ◽  
Zijing Seng ◽  
...  

ABSTRACT Guanine (G)-rich sequences in RNA can fold into diverse RNA G-quadruplex (rG4) structures to mediate various biological functions and cellular processes in eukaryotic organisms. However, the presence, locations, and functions of rG4s in prokaryotes are still elusive. We used QUMA-1, an rG4-specific fluorescent probe, to detect rG4 structures in a wide range of bacterial species both in vitro and in live cells and found rG4 to be an abundant RNA secondary structure across those species. Subsequently, to identify bacterial rG4 sites in the transcriptome, the model Escherichia coli strain and a major human pathogen, Pseudomonas aeruginosa, were subjected to recently developed high-throughput rG4 structure sequencing (rG4-seq). In total, 168 and 161 in vitro rG4 sites were found in E. coli and P. aeruginosa, respectively. Genes carrying these rG4 sites were found to be involved in virulence, gene regulation, cell envelope synthesis, and metabolism. More importantly, biophysical assays revealed the formation of a group of rG4 sites in mRNAs (such as hemL and bswR), and they were functionally validated in cells by genetic (point mutation and lux reporter assays) and phenotypic experiments, providing substantial evidence for the formation and function of rG4s in bacteria. Overall, our study uncovers important regulatory functions of rG4s in bacterial pathogenicity and metabolic pathways and strongly suggests that rG4s exist and can be detected in a wide range of bacterial species. IMPORTANCE G-quadruplex in RNA (rG4) mediates various biological functions and cellular processes in eukaryotic organisms. However, the presence, locations, and functions of rG4 are still elusive in prokaryotes. Here, we found that rG4 is an abundant RNA secondary structure across a wide range of bacterial species. Subsequently, the transcriptome-wide rG4 structure sequencing (rG4-seq) revealed that the model E. coli strain and a major human pathogen, P. aeruginosa, have 168 and 161 in vitro rG4 sites, respectively, involved in virulence, gene regulation, cell envelope, and metabolism. We further verified the regulatory functions of two rG4 sites in bacteria (hemL and bswR). Overall, this finding strongly suggests that rG4s play key regulatory roles in a wide range of bacterial species.


2020 ◽  
Vol 202 (11) ◽  
Author(s):  
Yuqing Long ◽  
Weixin Fu ◽  
Su Wang ◽  
Xuan Deng ◽  
Yongxin Jin ◽  
...  

ABSTRACT Factor for inversion stimulation (Fis) is a versatile DNA binding protein that plays an important role in coordinating bacterial global gene expression in response to growth phases and environmental stresses. Previously, we demonstrated that Fis regulates the type III secretion system (T3SS) in Pseudomonas aeruginosa. In this study, we explored the role of Fis in the antibiotic resistance of P. aeruginosa and found that mutation of the fis gene increases the bacterial susceptibility to ciprofloxacin. We further demonstrated that genes related to pyocin biosynthesis are upregulated in the fis mutant. The pyocins are produced in response to genotoxic agents, including ciprofloxacin, and the release of pyocins results in lysis of the producer cell. Thus, pyocin biosynthesis genes sensitize P. aeruginosa to ciprofloxacin. We found that PrtN, the positive regulator of the pyocin biosynthesis genes, is upregulated in the fis mutant. Genetic experiments and electrophoretic mobility shift assays revealed that Fis directly binds to the promoter region of prtN and represses its expression. Therefore, our results revealed novel Fis-mediated regulation on pyocin production and bacterial resistance to ciprofloxacin in P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa is an important opportunistic pathogenic bacterium that causes various acute and chronic infections in human, especially in patients with compromised immunity, cystic fibrosis (CF), and/or severe burn wounds. About 60% of cystic fibrosis patients have a chronic respiratory infection caused by P. aeruginosa. The bacterium is intrinsically highly resistant to antibiotics, which greatly increases difficulties in clinical treatment. Therefore, it is critical to understand the mechanisms and the regulatory pathways that are involved in antibiotic resistance. In this study, we elucidated a novel regulatory pathway that controls the bacterial resistance to fluoroquinolone antibiotics, which enhances our understanding of how P. aeruginosa responds to ciprofloxacin.


Sign in / Sign up

Export Citation Format

Share Document