scholarly journals Inhibition of Plasmodium falciparum Choline Kinase by Hexadecyltrimethylammonium Bromide: a Possible Antimalarial Mechanism

2006 ◽  
Vol 51 (2) ◽  
pp. 696-706 ◽  
Author(s):  
Vinay Choubey ◽  
Pallab Maity ◽  
Mithu Guha ◽  
Sanjay Kumar ◽  
Kumkum Srivastava ◽  
...  

ABSTRACT Choline kinase is the first enzyme in the Kennedy pathway (CDP-choline pathway) for the biosynthesis of the most essential phospholipid, phosphatidylcholine, in Plasmodium falciparum. In addition, choline kinase also plays a pivotal role in trapping essential polar head group choline inside the malaria parasite. Recently, Plasmodium falciparum choline kinase (PfCK) has been cloned, overexpressed, and purified. However, the function of this enzyme in parasite growth and survival has not been evaluated owing to the lack of a suitable inhibitor. Purified recombinant PfCK enabled us to identify an inhibitor of PfCK, hexadecyltrimethylammonium bromide (HDTAB), which has a very close structural resemblance to hexadecylphosphocholine (miltefosin), the well-known antiproliferative and antileishmanial drug. HDTAB inhibited PfCK in a dose-dependent manner and offered very potent antimalarial activity in vitro against Plasmodium falciparum. Moreover, HDTAB exhibited profound antimalarial activity in vivo against the rodent malaria parasite Plasmodium yoelii (N-67 strain). Interestingly, parasites at the trophozoite and schizont stages were found to be particularly sensitive to HDTAB. The stage-specific antimalarial effect of HDTAB correlated well with the expression pattern of PfCK in P. falciparum, which was observed by reverse transcription-PCR and immunofluorescence microscopy. Furthermore, the antimalarial activity of HDTAB paralleled the decrease in phosphatidylcholine content, which was found to correlate with the decreased phosphocholine generation. These results suggest that inhibition of choline kinase by HDTAB leads to decreased phosphocholine, which in turn causes a decrease in phosphatidylcholine biosynthesis, resulting in death of the parasite.

2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Letícia Tiburcio Ferreira ◽  
Juliana Rodrigues ◽  
Gustavo Capatti Cassiano ◽  
Tatyana Almeida Tavella ◽  
Kaira Cristina Peralis Tomaz ◽  
...  

ABSTRACT Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Among the seven drugs identified as promising antimalarial candidates, the anthracycline epirubicin was selected for further experimental validation. Epirubicin was shown to be potent in vitro against sensitive and multidrug-resistant P. falciparum strains and P. vivax field isolates in the nanomolar range, as well as being effective against an in vivo murine model of Plasmodium yoelii. Transmission-blocking activity was observed for epirubicin in vitro and in vivo. Finally, using yeast-based haploinsufficiency chemical genomic profiling, we aimed to get insights into the mechanism of action of epirubicin. Beyond the target predicted in silico (a DNA gyrase in the apicoplast), functional assays suggested a GlcNac-1-P-transferase (GPT) enzyme as a potential target. Docking calculations predicted the binding mode of epirubicin with DNA gyrase and GPT proteins. Epirubicin is originally an antitumoral agent and presents associated toxicity. However, its antiplasmodial activity against not only P. falciparum but also P. vivax in different stages of the parasite life cycle supports the use of this drug as a scaffold for hit-to-lead optimization in malaria drug discovery.


2015 ◽  
Vol 17 (4) ◽  
pp. 657-666 ◽  
Author(s):  
G. FRAUSIN ◽  
R. B. S. LIMA ◽  
A. F. HIDALGO ◽  
L. C. MING ◽  
A.M. POHLIT

ABSTRACTIn the current work we performed a review of the Araceae family species traditionally used to treat malaria and its symptoms. The aim is to reveal the large number of antimalarial Araceae species used worldwide and their great unexplored potential as sources of antimalarial natural products. The SciFinder Scholar, Scielo, PubMed, ScienceDirect and Google books search engines were consulted. Forty-three records of 36 species and 23 genera of Araceae used for malaria and symptoms treatment were found. The neotropical genera Philodendron Schott and Anthurium Schott were the best represented for the use in the treatment of malaria, fevers, liver problems and headaches. Leaves and tubers were the most used parts and decoction was the most common preparation method. The extracts of Araceae species inhibit the in vitro growth of the human malaria parasite, the Plasmodium falciparum Welch, and significant median inhibitory concentrations (IC50) for extracts of guaimbê-sulcado (Rhaphidophora decursiva (Roxb.) Schott), aninga (Montrichardia linifera (Arruda) Schott), Culcasia lancifolia N.E. Br. and forest anchomanes (Anchomanes difformis (Blume) Engl.) have been reported demonstrating the antimalarial and cytotoxicity potential of the extracts and sub-fractions. In the only report about the antimalarial components of this family, the neolignan polysyphorin and the benzoperoxide rhaphidecurperoxin presented strong in vitro inhibition of the D6 and W2 strains of Plasmodiumfalciparum (IC50 = 368-540 ng/mL). No live study about antimalarial activity in animal models has been conducted on a species of Araceae. More bioguided chemical composition studies about the in vitro and also thein vivo antimalarial activity of the Araceae are needed in order to enhance the knowledge about the antimalarial potential of this family.


2000 ◽  
Vol 44 (1) ◽  
pp. 88-96 ◽  
Author(s):  
Thomas Akompong ◽  
Nafisa Ghori ◽  
Kasturi Haldar

ABSTRACT The human malaria parasite Plasmodium falciparumdigests hemoglobin and polymerizes the released free heme into hemozoin. This activity occurs in an acidic organelle called the food vacuole and is essential for survival of the parasite in erythrocytes. Since acidic conditions are known to enhance the auto-oxidation of hemoglobin, we investigated whether hemoglobin ingested by the parasite was oxidized and whether the oxidation process could be a target for chemotherapy against malaria. We released parasites from their host cells and separately analyzed hemoglobin ingested by the parasites from that remaining in the erythrocytes. Isolated parasites contained elevated amounts (38.5% ± 3.5%) of oxidized hemoglobin (methemoglobin) compared to levels (0.8% ± 0.2%) found in normal, uninfected erythrocytes. Further, treatment of infected cells with the reducing agent riboflavin for 24 h decreased the parasite methemoglobin level by 55%. It also inhibited hemozoin production by 50% and decreased the average size of the food vacuole by 47%. Administration of riboflavin for 48 h resulted in a 65% decrease in food vacuole size and inhibited asexual parasite growth in cultures. High doses of riboflavin are used clinically to treat congenital methemoglobinemia without any adverse side effects. This activity, in conjunction with its impressive antimalarial activity, makes riboflavin attractive as a safe and inexpensive drug for treating malaria caused by P. falciparum.


RSC Advances ◽  
2016 ◽  
Vol 6 (28) ◽  
pp. 23718-23725 ◽  
Author(s):  
Lalit Yadav ◽  
Mohit K. Tiwari ◽  
Bharti Rajesh Kumar Shyamlal ◽  
Manas Mathur ◽  
Ajit K. Swami ◽  
...  

Bicyclic and tricyclic aza-peroxides were synthesized and assessed for theirin vitroandin vivoantimalarial activities againstPlasmodium falciparum(3D7 strain) andPlasmodium yoelii nigeriensisin Swiss mice by an oral route, respectively.


2000 ◽  
Vol 44 (9) ◽  
pp. 2540-2542 ◽  
Author(s):  
Bradley J. Berger

ABSTRACT Twenty-three aminooxy compounds have been examined for their ability to inhibit the growth of the malaria parasite Plasmodium falciparum in vitro. Eight of these compounds were found to have 50% inhibitory concentrations less than 10 μM, with the best drugs being canaline (the aminooxy analogue of ornithine) and CGP51905A at 297 ± 23.6 nM and 242 ± 18.8 nM, respectively. Canaline was also assayed in combination with the ornithine decarboxylase inhibitor difluoromethylornithine, and the two drugs were found to be synergistic in antimalarial activity.


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1250-1255 ◽  
Author(s):  
S Whitehead ◽  
TE Peto

Abstract Deferoxamine (DF) has antimalarial activity that can be demonstrated in vitro and in vivo. This study is designed to examine the speed of onset and stage dependency of growth inhibition by DF and to determine whether its antimalarial activity is cytostatic or cytocidal. Growth inhibition was assessed by suppression of hypoxanthine incorporation and differences in morphologic appearance between treated and control parasites. Using synchronized in vitro cultures of Plasmodium falciparum, growth inhibition by DF was detected within a single parasite cycle. Ring and nonpigmented trophozoite stages were sensitive to the inhibitory effect of DF but cytostatic antimalarial activity was suggested by evidence of parasite recovery in later cycles. However, profound growth inhibition, with no evidence of subsequent recovery, occurred when pigmented trophozoites and early schizonts were exposed to DF. At this stage in parasite development, the activity of DF was cytocidal and furthermore, the critical period of exposure may be as short as 6 hours. These observations suggest that iron chelators may have a role in the treatment of clinical malaria.


1996 ◽  
Vol 40 (9) ◽  
pp. 2094-2098 ◽  
Author(s):  
B Pradines ◽  
F Ramiandrasoa ◽  
L K Basco ◽  
L Bricard ◽  
G Kunesch ◽  
...  

The activities of novel iron chelators, alone and in combination with chloroquine, quinine, or artemether, were evaluated in vitro against susceptible and resistant clones of Plasmodium falciparum with a semimicroassay system. N4-nonyl,N1,N8-bis(2,3-dihydroxybenzoyl) spermidine hydrobromide (compound 7) demonstrated the highest level of activity: 170 nM against a chloroquine-susceptible clone and 1 microM against a chloroquine-resistant clone (50% inhibitory concentrations). Compounds 6, 8, and 10 showed antimalarial activity with 50% inhibitory concentrations of about 1 microM. Compound 7 had no effect on the activities of chloroquine, quinine, and artemether against either clone, and compound 8 did not enhance the schizontocidal action of either chloroquine or quinine against the chloroquine-resistant clone. The incubation of compound 7 with FeCI3 suppressed or decreased the in vitro antimalarial activity of compound 7, while no effect was observed with incubation of compound 7 with CuSO4 and ZnSO4. These results suggest that iron deprivation may be the main mechanism of action of compound 7 against the malarial parasites. Chelator compounds 7 and 8 primarily affected trophozoite stages, probably by influencing the activity of ribonucleotide reductase, and thus inhibiting DNA synthesis.


2018 ◽  
Vol 34 (2) ◽  
pp. 655-662 ◽  
Author(s):  
Ade Arsianti ◽  
Hendry Astuti ◽  
Fadilah Fadilah ◽  
Daniel Martin Simadibrata ◽  
Zoya Marie Adyasa ◽  
...  

2015 ◽  
Vol 10 (4) ◽  
pp. 917 ◽  
Author(s):  
Mukesh Kumar Kumawat ◽  
Dipak Chetia

<p class="Abstract">Seven novel dispiro-1,2,4,5-tetraoxane derivatives were synthesized and characterized by a number of analytical and spectroscopic techniques. The molecules were subsequently screened for in vitro antimalarial activity against chloroquine resistant strain of <em>Plasmodium falciparum</em> (RKL-9). At antimalarial activity screening, two compounds, namely 5d (MIC = 15.6 µg/mL or 64.5 µM) and 5f (MIC = 15.6 µg/mL or 54.6 µM) were found to be about 1.5 times more potent against chloroquine resistant strain-RKL-9 compared to chloroquine (MIC = 25.0 µg/mL or 78.3 µM). Molecular docking studies of potent ligands were also performed in cysteine protease binding pocket residues of falcipain-2 as a target protein.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document