Synthesis and antimalarial activity of novel bicyclic and tricyclic aza-peroxides

RSC Advances ◽  
2016 ◽  
Vol 6 (28) ◽  
pp. 23718-23725 ◽  
Author(s):  
Lalit Yadav ◽  
Mohit K. Tiwari ◽  
Bharti Rajesh Kumar Shyamlal ◽  
Manas Mathur ◽  
Ajit K. Swami ◽  
...  

Bicyclic and tricyclic aza-peroxides were synthesized and assessed for theirin vitroandin vivoantimalarial activities againstPlasmodium falciparum(3D7 strain) andPlasmodium yoelii nigeriensisin Swiss mice by an oral route, respectively.

2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Letícia Tiburcio Ferreira ◽  
Juliana Rodrigues ◽  
Gustavo Capatti Cassiano ◽  
Tatyana Almeida Tavella ◽  
Kaira Cristina Peralis Tomaz ◽  
...  

ABSTRACT Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Among the seven drugs identified as promising antimalarial candidates, the anthracycline epirubicin was selected for further experimental validation. Epirubicin was shown to be potent in vitro against sensitive and multidrug-resistant P. falciparum strains and P. vivax field isolates in the nanomolar range, as well as being effective against an in vivo murine model of Plasmodium yoelii. Transmission-blocking activity was observed for epirubicin in vitro and in vivo. Finally, using yeast-based haploinsufficiency chemical genomic profiling, we aimed to get insights into the mechanism of action of epirubicin. Beyond the target predicted in silico (a DNA gyrase in the apicoplast), functional assays suggested a GlcNac-1-P-transferase (GPT) enzyme as a potential target. Docking calculations predicted the binding mode of epirubicin with DNA gyrase and GPT proteins. Epirubicin is originally an antitumoral agent and presents associated toxicity. However, its antiplasmodial activity against not only P. falciparum but also P. vivax in different stages of the parasite life cycle supports the use of this drug as a scaffold for hit-to-lead optimization in malaria drug discovery.


2008 ◽  
Vol 53 (3) ◽  
pp. 1100-1106 ◽  
Author(s):  
Patrice Njomnang Soh ◽  
Benoît Witkowski ◽  
David Olagnier ◽  
Marie-Laure Nicolau ◽  
Maria-Concepcion Garcia-Alvarez ◽  
...  

ABSTRACT Malaria is one of the most significant causes of infectious disease in the world. The search for new antimalarial chemotherapies has become increasingly urgent due to the parasites’ resistance to current drugs. Ellagic acid is a polyphenol found in various plant products. In this study, antimalarial properties of ellagic acid were explored. The results obtained have shown high activity in vitro against all Plasmodium falciparum strains whatever their levels of chloroquine and mefloquine resistance (50% inhibitory concentrations ranging from 105 to 330 nM). Ellagic acid was also active in vivo against Plamodium vinckei petteri in suppressive, curative, and prophylactic murine tests, without any toxicity (50% effective dose by the intraperitoneal route inferior to 1 mg/kg/day). The study of the point of action of its antimalarial activity in the erythrocytic cycle of Plasmodium falciparum demonstrated that it occurred at the mature trophozoite and young schizont stages. Moreover, ellagic acid has been shown to potentiate the activity of current antimalarial drugs such as chloroquine, mefloquine, artesunate, and atovaquone. This study also proved the antioxidant activity of ellagic acid and, in contrast, the inhibitory effect of the antioxidant compound N-acetyl-l-cysteine on its antimalarial efficacy. The possible mechanisms of action of ellagic acid on P. falciparum are discussed in light of the results. Ellagic acid has in vivo activity against plasmodia, but modification of the compound could lead to improved pharmacological properties, principally for the oral route.


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1250-1255 ◽  
Author(s):  
S Whitehead ◽  
TE Peto

Abstract Deferoxamine (DF) has antimalarial activity that can be demonstrated in vitro and in vivo. This study is designed to examine the speed of onset and stage dependency of growth inhibition by DF and to determine whether its antimalarial activity is cytostatic or cytocidal. Growth inhibition was assessed by suppression of hypoxanthine incorporation and differences in morphologic appearance between treated and control parasites. Using synchronized in vitro cultures of Plasmodium falciparum, growth inhibition by DF was detected within a single parasite cycle. Ring and nonpigmented trophozoite stages were sensitive to the inhibitory effect of DF but cytostatic antimalarial activity was suggested by evidence of parasite recovery in later cycles. However, profound growth inhibition, with no evidence of subsequent recovery, occurred when pigmented trophozoites and early schizonts were exposed to DF. At this stage in parasite development, the activity of DF was cytocidal and furthermore, the critical period of exposure may be as short as 6 hours. These observations suggest that iron chelators may have a role in the treatment of clinical malaria.


2009 ◽  
Vol 105 (1) ◽  
pp. 275-279 ◽  
Author(s):  
Matheus Santos de Sá ◽  
José Fernando Oliveira Costa ◽  
Antoniana Ursine Krettli ◽  
Mariano Gustavo Zalis ◽  
Gabriela Lemos de Azevedo Maia ◽  
...  

2013 ◽  
Vol 8 (9) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Martha Induli ◽  
Meron Gebru ◽  
Negera Abdissa ◽  
Hosea Akala ◽  
Ingrid Wekesa ◽  
...  

Extracts of the rhizomes of Kniphofia foliosa exhibited antiplasmodial activities against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum with IC50 values of 3–5 μg/mL. A phenyloxanthrone, named 10-acetonylknipholone cyclooxanthrone (1) and an anthraquinone-anthrone dimer, chryslandicin 10-methyl ether (2), were isolated from the rhizomes, along with known quinones, including the rare phenylanthraquinone dimers, joziknipholones A and B. The structures of these compounds were determined based on spectroscopic data. This is the second report on the occurrence of the dimeric phenylanthraquinones in nature. In an in vitro antiplasmodial assay of the isolated compounds, activity was observed for phenylanthraquinones, anthraquinone-anthrone dimers and dimeric phenylanthraquinones, with joziknipholone A being the most active. The new compound, 10-acetonylknipholone cyclooxanthrone, also showed anti-plasmodial activity. In an in vivo assay, knipholone anthrone displayed marginal antimalarial activity.


ChemInform ◽  
2004 ◽  
Vol 35 (26) ◽  
Author(s):  
Valter F. de Andrade-Neto ◽  
Marilia O. F. Goulart ◽  
Jorge F. da Silva Filho ◽  
Matuzalem J. da Silva ◽  
Maria do Carmo F. R. Pinto ◽  
...  

Parasitology ◽  
2005 ◽  
Vol 131 (3) ◽  
pp. 295-301 ◽  
Author(s):  
R. TRIPATHI ◽  
S. DHAWAN ◽  
G. P. DUTTA

Many different drug-resistant lines of rodent malaria are available as screening models. It is obligatory to screen new compounds for antimalarial activity against a series of resistant lines in order to identify a compound with potential for the treatment of multi-drug resistant (MDR) malaria infections. Instead of using a battery of resistant lines, a single MDR Plasmodium yoelii nigeriensis strain that shows a wide spectrum of drug resistance to high doses of chloroquine, mepacrine, amodiaquine, mefloquine, quinine, quinidine, halofantrine as well as tetracyclines, fluoroquinolines and erythromycin, was used to assess the blood schizontocidal efficacy of a new macrolide azithromycin and other antibiotics. The present study shows that only azithromycin has the potential to control an MDR P. y. nigeriensis infection in Swiss mice, provided the treatment with a dose of 50–100 mg/kg/day by oral route is continued for a period of 7 days. Tetracycline, oxytetracycline, doxycyline, erythromycin, ciprofloxacin and norfloxacin, although active in vitro, failed to protect the mice. Tetracycline, ciprofloxacin and norfloxacin combinations with chloroquine did not control the infection. Additionally, the antimalarial efficacy of azithromycin can be potentiated with the addition of arteether, which is an ethyl ether derivative of artemisinin. A total (100%) curative effect has been obtained with a shorter regimen of 4 days only.


2019 ◽  
Vol 40 (3) ◽  
pp. 931-971 ◽  
Author(s):  
Lian‐Shun Feng ◽  
Zhi Xu ◽  
Le Chang ◽  
Chuan Li ◽  
Xiao‐Fei Yan ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Kirti Mishra ◽  
Aditya P. Dash ◽  
Nrisingha Dey

Andrographolide (AND), the diterpene lactone compound, was purified by HPLC from the methanolic fraction of the plantAndrographis paniculata. The compound was found to have potent antiplasmodial activity when tested in isolation and in combination with curcumin and artesunate against the erythrocytic stages ofPlasmodium falciparum in vitroandPlasmodium bergheiANKAin vivo. IC50s for artesunate (AS), andrographolide (AND), and curcumin (CUR) were found to be 0.05, 9.1 and 17.4 μM, respectively. The compound (AND) was found synergistic with curcumin (CUR) and addictively interactive with artesunate (AS).In vivo, andrographolide-curcumin exhibited better antimalarial activity, not only by reducing parasitemia (29%), compared to the control (81%), but also by extending the life span by 2-3 folds. Being nontoxic to thein vivosystem this agent can be used as template molecule for designing new derivatives with improved antimalarial properties.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Wiwied Ekasari ◽  
Dwi Widya Pratiwi ◽  
Zelmira Amanda ◽  
Suciati ◽  
Aty Widyawaruyanti ◽  
...  

Background. Each part of H. annuus plants is traditionally used as medicinal remedies for several diseases, including malaria. Antimalarial activity of the leaf and the seed has already been observed; however, there is no report about antimalarial activity of the other parts of H. annuus plants. In this study, we assess in vitro and in vivo antimalarial activity of each part of the plants and its mechanism as antimalarial agent against inhibition of heme detoxification. Objective. To investigate the antimalarial activity of various parts of H. annuus. Methods. Various parts of the H. annuus plant were tested for in vitro antimalarial activity against Plasmodium falciparum 3D7 strain (chloroquine-sensitive), in vivo antimalarial activity against P. berghei using Peters’ 4-day suppressive test in BALB/c mice, curative and prophylaxis assay, and inhibition of heme detoxification by evaluating β-hematin level. Results. Ethanol extract of the roots showed the highest antimalarial activity, followed by ethanol extract of leaves, with IC50 values of 2.3 ± 1.4 and 4.3 ± 2.2 μg/mL, respectively and the percentage inhibition of P. berghei of 63.6 ± 8.0 and 59.3 ± 13.2 at a dose of 100 mg/kg, respectively. Ethanol extract of roots produced an ED50 value of 10.6 ± 0.2 mg/kg in the curative test and showed an inhibition of 79.2% at a dose of 400 mg/kg in the prophylactic assay. In inhibition of heme detoxification assay, root and leaf ethanol extracts yielded a lower IC50 value than positive (chloroquine) control with a value of 0.4 ± 0.0 and 0.5 ± 0.0 mg/mL, respectively. Conclusion. There were promising results of the ethanol extracts of root of H. annuus as a new source for the development of a new plant-based antimalarial agent.


Sign in / Sign up

Export Citation Format

Share Document