scholarly journals Stage-dependent effect of deferoxamine on growth of Plasmodium falciparum in vitro

Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1250-1255 ◽  
Author(s):  
S Whitehead ◽  
TE Peto

Abstract Deferoxamine (DF) has antimalarial activity that can be demonstrated in vitro and in vivo. This study is designed to examine the speed of onset and stage dependency of growth inhibition by DF and to determine whether its antimalarial activity is cytostatic or cytocidal. Growth inhibition was assessed by suppression of hypoxanthine incorporation and differences in morphologic appearance between treated and control parasites. Using synchronized in vitro cultures of Plasmodium falciparum, growth inhibition by DF was detected within a single parasite cycle. Ring and nonpigmented trophozoite stages were sensitive to the inhibitory effect of DF but cytostatic antimalarial activity was suggested by evidence of parasite recovery in later cycles. However, profound growth inhibition, with no evidence of subsequent recovery, occurred when pigmented trophozoites and early schizonts were exposed to DF. At this stage in parasite development, the activity of DF was cytocidal and furthermore, the critical period of exposure may be as short as 6 hours. These observations suggest that iron chelators may have a role in the treatment of clinical malaria.

Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1250-1255
Author(s):  
S Whitehead ◽  
TE Peto

Deferoxamine (DF) has antimalarial activity that can be demonstrated in vitro and in vivo. This study is designed to examine the speed of onset and stage dependency of growth inhibition by DF and to determine whether its antimalarial activity is cytostatic or cytocidal. Growth inhibition was assessed by suppression of hypoxanthine incorporation and differences in morphologic appearance between treated and control parasites. Using synchronized in vitro cultures of Plasmodium falciparum, growth inhibition by DF was detected within a single parasite cycle. Ring and nonpigmented trophozoite stages were sensitive to the inhibitory effect of DF but cytostatic antimalarial activity was suggested by evidence of parasite recovery in later cycles. However, profound growth inhibition, with no evidence of subsequent recovery, occurred when pigmented trophozoites and early schizonts were exposed to DF. At this stage in parasite development, the activity of DF was cytocidal and furthermore, the critical period of exposure may be as short as 6 hours. These observations suggest that iron chelators may have a role in the treatment of clinical malaria.


2008 ◽  
Vol 53 (3) ◽  
pp. 1100-1106 ◽  
Author(s):  
Patrice Njomnang Soh ◽  
Benoît Witkowski ◽  
David Olagnier ◽  
Marie-Laure Nicolau ◽  
Maria-Concepcion Garcia-Alvarez ◽  
...  

ABSTRACT Malaria is one of the most significant causes of infectious disease in the world. The search for new antimalarial chemotherapies has become increasingly urgent due to the parasites’ resistance to current drugs. Ellagic acid is a polyphenol found in various plant products. In this study, antimalarial properties of ellagic acid were explored. The results obtained have shown high activity in vitro against all Plasmodium falciparum strains whatever their levels of chloroquine and mefloquine resistance (50% inhibitory concentrations ranging from 105 to 330 nM). Ellagic acid was also active in vivo against Plamodium vinckei petteri in suppressive, curative, and prophylactic murine tests, without any toxicity (50% effective dose by the intraperitoneal route inferior to 1 mg/kg/day). The study of the point of action of its antimalarial activity in the erythrocytic cycle of Plasmodium falciparum demonstrated that it occurred at the mature trophozoite and young schizont stages. Moreover, ellagic acid has been shown to potentiate the activity of current antimalarial drugs such as chloroquine, mefloquine, artesunate, and atovaquone. This study also proved the antioxidant activity of ellagic acid and, in contrast, the inhibitory effect of the antioxidant compound N-acetyl-l-cysteine on its antimalarial efficacy. The possible mechanisms of action of ellagic acid on P. falciparum are discussed in light of the results. Ellagic acid has in vivo activity against plasmodia, but modification of the compound could lead to improved pharmacological properties, principally for the oral route.


2009 ◽  
Vol 105 (1) ◽  
pp. 275-279 ◽  
Author(s):  
Matheus Santos de Sá ◽  
José Fernando Oliveira Costa ◽  
Antoniana Ursine Krettli ◽  
Mariano Gustavo Zalis ◽  
Gabriela Lemos de Azevedo Maia ◽  
...  

2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Letícia Tiburcio Ferreira ◽  
Juliana Rodrigues ◽  
Gustavo Capatti Cassiano ◽  
Tatyana Almeida Tavella ◽  
Kaira Cristina Peralis Tomaz ◽  
...  

ABSTRACT Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Among the seven drugs identified as promising antimalarial candidates, the anthracycline epirubicin was selected for further experimental validation. Epirubicin was shown to be potent in vitro against sensitive and multidrug-resistant P. falciparum strains and P. vivax field isolates in the nanomolar range, as well as being effective against an in vivo murine model of Plasmodium yoelii. Transmission-blocking activity was observed for epirubicin in vitro and in vivo. Finally, using yeast-based haploinsufficiency chemical genomic profiling, we aimed to get insights into the mechanism of action of epirubicin. Beyond the target predicted in silico (a DNA gyrase in the apicoplast), functional assays suggested a GlcNac-1-P-transferase (GPT) enzyme as a potential target. Docking calculations predicted the binding mode of epirubicin with DNA gyrase and GPT proteins. Epirubicin is originally an antitumoral agent and presents associated toxicity. However, its antiplasmodial activity against not only P. falciparum but also P. vivax in different stages of the parasite life cycle supports the use of this drug as a scaffold for hit-to-lead optimization in malaria drug discovery.


2013 ◽  
Vol 8 (9) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Martha Induli ◽  
Meron Gebru ◽  
Negera Abdissa ◽  
Hosea Akala ◽  
Ingrid Wekesa ◽  
...  

Extracts of the rhizomes of Kniphofia foliosa exhibited antiplasmodial activities against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum with IC50 values of 3–5 μg/mL. A phenyloxanthrone, named 10-acetonylknipholone cyclooxanthrone (1) and an anthraquinone-anthrone dimer, chryslandicin 10-methyl ether (2), were isolated from the rhizomes, along with known quinones, including the rare phenylanthraquinone dimers, joziknipholones A and B. The structures of these compounds were determined based on spectroscopic data. This is the second report on the occurrence of the dimeric phenylanthraquinones in nature. In an in vitro antiplasmodial assay of the isolated compounds, activity was observed for phenylanthraquinones, anthraquinone-anthrone dimers and dimeric phenylanthraquinones, with joziknipholone A being the most active. The new compound, 10-acetonylknipholone cyclooxanthrone, also showed anti-plasmodial activity. In an in vivo assay, knipholone anthrone displayed marginal antimalarial activity.


ChemInform ◽  
2004 ◽  
Vol 35 (26) ◽  
Author(s):  
Valter F. de Andrade-Neto ◽  
Marilia O. F. Goulart ◽  
Jorge F. da Silva Filho ◽  
Matuzalem J. da Silva ◽  
Maria do Carmo F. R. Pinto ◽  
...  

2005 ◽  
Vol 52 (4) ◽  
pp. 849-856
Author(s):  
Janusz Szemraj ◽  
Khalid N I Al-Nedawi ◽  
Ewa Chabielska ◽  
Wlodzimierz Buczko ◽  
Zofia Pawlowska

The inhibitory effect of numerous analogues of PO-16, an hexadecadeoxyribonucleotide antisense to sequences -22 to -17 of PAI-1 mRNA coding for a fragment of the signal peptide, on the expression of PAI-1 in endothelial cells, and physiological consequences of the subsequently reduced PAI-1 activity tested in vitro and in vivo, were described in our previous studies. Of particular interest was PO-16 5'-O-conjugated with menthyl phosphorothioate (MPO-16R). In this work, tissue localisation of MPO-16R labelled with [(35)S] phosphorothioate at the 3'-end, was determined. [(35)S]MPO-16R and control [(35)S]MPO-16R-SENSE oligonucleotides were administered intravenously into 22 rats and organ distribution of the labelled bioconjugates was assessed after 24 and 48 h. For this purpose, tissue sections were subjected to autoradiography, and quantitated by liquid scintillation after solubilisation. Overall clearance of radioactivity was already seen after 24 h, with the radioactivity recovered mainly in the kidney and liver. A smaller fraction of radioactivity was also retained in the spleen and heart. The kidney concentration of the labelled probe was higher than that of liver by 50%. The distribution of PAI-1 mRNA in untreated rat kidney, liver, spleen and heart established by two independent techniques: Ribonuclease Protection Assay and Real-Time PCR, shows the same pattern as that observed for [(35)S]MPO-16R antisense.


2019 ◽  
Vol 40 (3) ◽  
pp. 931-971 ◽  
Author(s):  
Lian‐Shun Feng ◽  
Zhi Xu ◽  
Le Chang ◽  
Chuan Li ◽  
Xiao‐Fei Yan ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Kirti Mishra ◽  
Aditya P. Dash ◽  
Nrisingha Dey

Andrographolide (AND), the diterpene lactone compound, was purified by HPLC from the methanolic fraction of the plantAndrographis paniculata. The compound was found to have potent antiplasmodial activity when tested in isolation and in combination with curcumin and artesunate against the erythrocytic stages ofPlasmodium falciparum in vitroandPlasmodium bergheiANKAin vivo. IC50s for artesunate (AS), andrographolide (AND), and curcumin (CUR) were found to be 0.05, 9.1 and 17.4 μM, respectively. The compound (AND) was found synergistic with curcumin (CUR) and addictively interactive with artesunate (AS).In vivo, andrographolide-curcumin exhibited better antimalarial activity, not only by reducing parasitemia (29%), compared to the control (81%), but also by extending the life span by 2-3 folds. Being nontoxic to thein vivosystem this agent can be used as template molecule for designing new derivatives with improved antimalarial properties.


2020 ◽  
Vol 25 ◽  
pp. 2515690X2092053 ◽  
Author(s):  
Zemene Demelash Kifle ◽  
Getnet Mequanint Adinew ◽  
Mestayet Geta Mengistie ◽  
Abyot Endale Gurmu ◽  
Engidaw Fentahun Enyew ◽  
...  

Background. The management and control of malaria has become gradually challenging due to the spread of drug-resistant parasites, lack of effective vaccine, and the resistance of vector to insecticides. Consequently, novel agents are urgently needed from different sources including from medicinal plants. In Ethiopia and Uganda, Myrica salicifolia root is traditionally claimed for the treatment of malaria. The aim of this study was to evaluate the in vivo antimalarial activity of root crude extract of M salicifolia. Methods. The parasite, Plasmodium berghei was used in this study since it is an appropriate parasite that is most commonly used because of its higher accessibility. A 4-day suppressive test was employed to evaluate the antimalarial effect of crude extract against early infection. The curative and prophylactic effect of the crude extract was further tested by Rane’s test and residual infection procedure. Parasitemia, survival time, packed cell volume, body weight, and rectal temperature of mice were used as evaluation parameters. Windows SPSS version 24 was used to analyze the data and analysis of variance followed by Tukey’s honestly significant difference to compare results between groups. Results. The root crude extract of M salicifolia significantly ( P < .05-.0001) suppressed parasitemia. The crude extract exhibited a chemosuppression of 40.90. Conclusion. The development of new antimalarial agents and the finding supports the traditional claims and previous in vitro studies.


Sign in / Sign up

Export Citation Format

Share Document