scholarly journals Time course of in vitro maturation of intra-erythrocytic malaria parasite: a comparison between Plasmodium falciparum and Plasmodium knowlesi

2002 ◽  
Vol 97 (6) ◽  
pp. 901-903 ◽  
Author(s):  
SD Srinivas ◽  
SK Puri
2016 ◽  
Vol 60 (7) ◽  
pp. 4361-4363 ◽  
Author(s):  
Megan S. J. Arnold ◽  
Jessica A. Engel ◽  
Ming Jang Chua ◽  
Gillian M. Fisher ◽  
Tina S. Skinner-Adams ◽  
...  

ABSTRACTThe zoonotic malaria parasitePlasmodium knowlesihas recently been established in continuousin vitroculture. Here, thePlasmodium falciparum[3H]hypoxanthine uptake assay was adapted forP. knowlesiand used to determine the sensitivity of this parasite to chloroquine, cycloguanil, and clindamycin. The data demonstrate thatP. knowlesiis sensitive to all drugs, with 50% inhibitory concentrations (IC50s) consistent with those obtained withP. falciparum. This assay provides a platform to useP. knowlesi in vitrofor drug discovery.


1990 ◽  
Vol 76 (6) ◽  
pp. 923 ◽  
Author(s):  
Pascal Millet ◽  
William E. Collins ◽  
Claude E. Monken ◽  
Bobby G. Brown

Author(s):  
Laís Pessanha de Carvalho ◽  
Sara Groeger-Otero ◽  
Andrea Kreidenweiss ◽  
Peter G. Kremsner ◽  
Benjamin Mordmüller ◽  
...  

Boromycin is a boron-containing macrolide antibiotic produced by Streptomyces antibioticus with potent activity against certain viruses, Gram-positive bacteria and protozoan parasites. Most antimalarial antibiotics affect plasmodial organelles of prokaryotic origin and have a relatively slow onset of action. They are used for malaria prophylaxis and for the treatment of malaria when combined to a fast-acting drug. Despite the success of artemisinin combination therapies, the current gold standard treatment, new alternatives are constantly needed due to the ability of malaria parasites to become resistant to almost all drugs that are in heavy clinical use. In vitro antiplasmodial activity screens of tetracyclines (omadacycline, sarecycline, methacycline, demeclocycline, lymecycline, meclocycline), macrolides (oleandomycin, boromycin, josamycin, troleandomycin), and control drugs (chloroquine, clindamycin, doxycycline, minocycline, eravacycline) revealed boromycin as highly potent against Plasmodium falciparum and the zoonotic Plasmodium knowlesi. In contrast to tetracyclines, boromycin rapidly killed asexual stages of both Plasmodium species already at low concentrations (~ 1 nM) including multidrug resistant P. falciparum strains (Dd2, K1, 7G8). In addition, boromycin was active against P. falciparum stage V gametocytes at a low nanomolar range (IC50: 8.5 ± 3.6 nM). Assessment of the mode of action excluded the apicoplast as the main target. Although there was an ionophoric activity on potassium channels, the effect was too low to explain the drug´s antiplasmodial activity. Boromycin is a promising antimalarial candidate with activity against multiple life cycle stages of the parasite.


Biomedicines ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 260
Author(s):  
Sofia Basova ◽  
Nathalie Wilke ◽  
Jan Christoph Koch ◽  
Aram Prokop ◽  
Albrecht Berkessel ◽  
...  

The rapid development of parasite drug resistance as well as the lack of medications targeting both the asexual and the sexual blood stages of the malaria parasite necessitate the search for novel antimalarial compounds. Eleven organoarsenic compounds were synthesized and tested for their effect on the asexual blood stages and sexual transmission stages of the malaria parasite Plasmodium falciparum using in vitro assays. The inhibitory potential of the compounds on blood stage viability was tested on the chloroquine (CQ)-sensitive 3D7 and the CQ-resistant Dd2 strain using the Malstat assay. The most effective compounds were subsequently investigated for their effect on impairing gametocyte development and gametogenesis, using the gametocyte-producing NF54 strain in respective cell-based assays. Their potential toxicity was investigated on leukemia cell line Nalm-6 and non-infected erythrocytes. Five out of the 11 compounds showed antiplasmodial activities against 3D7, with half-maximal inhibitory concentration (IC50) values ranging between 1.52 and 8.64 µM. Three of the compounds also acted against Dd2, with the most active compound As-8 exhibiting an IC50 of 0.35 µM. The five compounds also showed significant inhibitory effects on the parasite sexual stages at both IC50 and IC90 concentrations with As-8 displaying the best gametocytocidal activity. No hemolytic and cytotoxic effect was observed for any of the compounds. The organoarsenic compound As-8 may represent a good lead for the design of novel organoarsenic drugs with combined antimalarial and transmission blocking activities.


MedChemComm ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 450-455 ◽  
Author(s):  
Henrietta D. Attram ◽  
Sergio Wittlin ◽  
Kelly Chibale

Analogues of a novel class of benzimidazoles with an intramolecular hydrogen bonding motif have been synthesized and evaluated in vitro for their antiplasmodium activity against chloroquine-sensitive (NF54) and multi-drug resistant (K1) strains of the human malaria parasite Plasmodium falciparum.


Sign in / Sign up

Export Citation Format

Share Document