scholarly journals In VitroAntiretroviral Properties of S/GSK1349572, a Next-Generation HIV Integrase Inhibitor

2010 ◽  
Vol 55 (2) ◽  
pp. 813-821 ◽  
Author(s):  
Masanori Kobayashi ◽  
Tomokazu Yoshinaga ◽  
Takahiro Seki ◽  
Chiaki Wakasa-Morimoto ◽  
Kevin W. Brown ◽  
...  

ABSTRACTS/GSK1349572 is a next-generation HIV integrase (IN) inhibitor designed to deliver potent antiviral activity with a low-milligram once-daily dose requiring no pharmacokinetic (PK) booster. In addition, S/GSK1349572 demonstrates activity against clinically relevant IN mutant viruses and has potential for a high genetic barrier to resistance. S/GSK1349572 is a two-metal-binding HIV integrase strand transfer inhibitor whose mechanism of action was established throughin vitrointegrase enzyme assays, resistance passage experiments, activity against viral strains resistant to other classes of anti-HIV agents, and mechanistic cellular assays. In a variety of cellular antiviral assays, S/GSK1349572 inhibited HIV replication with low-nanomolar or subnanomolar potency and with a selectivity index of 9,400. The protein-adjusted half-maximal effective concentration (PA-EC50) extrapolated to 100% human serum was 38 nM. When virus was passaged in the presence of S/GSK1349572, highly resistant mutants were not selected, but mutations that effected a low fold change (FC) in the EC50(up to 4.1 fold) were identified in the vicinity of the integrase active site. S/GSK1349572 demonstrated activity against site-directed molecular clones containing the raltegravir-resistant signature mutations Y143R, Q148K, N155H, and G140S/Q148H (FCs, 1.4, 1.1, 1.2, and 2.6, respectively), while these mutants led to a high FC in the EC50of raltegravir (11- to >130-fold). Either additive or synergistic effects were observed when S/GSK1349572 was tested in combination with representative approved antiretroviral agents; no antagonistic effects were seen. These findings demonstrate that S/GSK1349572 would be classified as a next-generation drug in the integrase inhibitor class, with a resistance profile markedly different from that of first-generation integrase inhibitors.

2014 ◽  
Vol 59 (1) ◽  
pp. 397-406 ◽  
Author(s):  
Tomokazu Yoshinaga ◽  
Masanori Kobayashi ◽  
Takahiro Seki ◽  
Shigeru Miki ◽  
Chiaki Wakasa-Morimoto ◽  
...  

ABSTRACTGSK1265744 is a new HIV integrase strand transfer inhibitor (INSTI) engineered to deliver efficient antiviral activity with a once-daily, low-milligram dose that does not require a pharmacokinetic booster. Thein vitroantiviral profile and mechanism of action of GSK1265744 were established through integrase enzyme assays, resistance passage experiments, and cellular assays with site-directed molecular (SDM) HIV clones resistant to other classes of anti-HIV-1 agents and earlier INSTIs. GSK1265744 inhibited HIV replication with low or subnanomolar efficacy and with a selectivity index of at least 22,000 under the same culture conditions. The protein-adjusted half-maximal inhibitory concentration (PA-EC50) extrapolated to 100% human serum was 102 nM. When the virus was passaged in the presence of GSK1265744, highly resistant mutants with more than a 10-fold change (FC) in EC50relative to that of the wild-type were not observed for up to 112 days of culture. GSK1265744 demonstrated activity against SDM clones containing the raltegravir (RAL)-resistant Y143R, Q148K, N155H, and G140S/Q148H signature variants (FC less than 6.1), while these mutants had a high FC in the EC50for RAL (11 to >130). Either additive or synergistic effects were observed when GSK1265744 was tested in combination with representative anti-HIV agents, and no antagonistic effects were seen. These findings demonstrate that, similar to dolutegravir, GSK1265744 is differentiated as a new INSTI, having a markedly distinct resistance profile compared with earlier INSTIs, RAL, and elvitegravir (EVG). The collective data set supports further clinical development of GSK1265744.


2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Said A. Hassounah ◽  
Ahmad Alikhani ◽  
Maureen Oliveira ◽  
Simrat Bharaj ◽  
Ruxandra-Ilinca Ibanescu ◽  
...  

ABSTRACT Animal models are essential to study novel antiretroviral drugs, resistance-associated mutations (RAMs), and treatment strategies. Bictegravir (BIC) is a novel potent integrase strand transfer inhibitor (INSTI) that has shown promising results against HIV-1 infection in vitro and in vivo and against clinical isolates with resistance against INSTIs. BIC has a higher genetic barrier to the development of resistance than two clinically approved INSTIs, termed raltegravir and elvitegravir. Another clinically approved INSTI, dolutegravir (DTG) also possesses a high genetic barrier to resistance, while a fourth compound, termed cabotegravir (CAB), is currently in late phases of clinical development. Here we report the susceptibilities of simian immunodeficiency virus (SIV) and HIV-1 integrase (IN) mutants containing various RAMs to BIC, CAB, and DTG. BIC potently inhibited SIV and HIV-1 in single cycle infection with 50% effective concentrations (EC50s) in the low nM range. In single cycle SIV infections, none of the E92Q, T97A, Y143R, or N155H substitutions had a significant effect on susceptibility to BIC (≤4-fold increase in EC50), whereas G118R and R263K conferred ∼14-fold and ∼6-fold increases in EC50, respectively. In both single and multiple rounds of HIV-1 infections, BIC remained active against the Y143R, N155H, R263K, R263K/M50I, and R263K/E138K mutants (≤4-fold increase in EC50). In multiple rounds of infection, the G140S/Q148H combination of substitutions decreased HIV-1 susceptibility to BIC 4.8-fold compared to 16.8- and 7.4-fold for CAB and DTG, respectively. BIC possesses an excellent resistance profile in regard to HIV and SIV and could be useful in nonhuman primate models of HIV infection.


2010 ◽  
Vol 84 (18) ◽  
pp. 9210-9216 ◽  
Author(s):  
Tamara Bar-Magen ◽  
Richard D. Sloan ◽  
Daniel A. Donahue ◽  
Björn D. Kuhl ◽  
Alexandra Zabeida ◽  
...  

ABSTRACT MK-2048 represents a prototype second-generation integrase strand transfer inhibitor (INSTI) developed with the goal of retaining activity against viruses containing mutations associated with resistance to first-generation INSTIs, raltegravir (RAL) and elvitegravir (EVG). Here, we report the identification of mutations (G118R and E138K) which confer resistance to MK-2048 and not to RAL or EVG. These mutations were selected in vitro and confirmed by site-specific mutagenesis. G118R, which appeared first in cell culture, conferred low levels of resistance to MK-2048. G118R also reduced viral replication capacity to approximately 1% that of the isogenic wild-type (wt) virus. The subsequent selection of E138K partially restored replication capacity to ≈13% of wt levels and increased resistance to MK-2048 to ≈8-fold. Viruses containing G118R and E138K remained largely susceptible to both RAL and EVG, suggesting a unique interaction between this second-generation INSTI and the enzyme may be defined by these residues as a potential basis for the increased intrinsic affinity and longer “off” rate of MK-2048. In silico structural analysis suggests that the introduction of a positively charged arginine at position 118, near the catalytic amino acid 116, might decrease Mg2+ binding, compromising enzyme function and thus leading to the significant reduction in both integration and viral replication capacity observed with these mutations.


2014 ◽  
Vol 58 (6) ◽  
pp. 3233-3244 ◽  
Author(s):  
Craig Fenwick ◽  
Ma'an Amad ◽  
Murray D. Bailey ◽  
Richard Bethell ◽  
Michael Bös ◽  
...  

ABSTRACTBI 224436 is an HIV-1 integrase inhibitor with effective antiviral activity that acts through a mechanism that is distinct from that of integrase strand transfer inhibitors (INSTIs). This 3-quinolineacetic acid derivative series was identified using an enzymatic integrase long terminal repeat (LTR) DNA 3′-processing assay. A combination of medicinal chemistry, parallel synthesis, and structure-guided drug design led to the identification of BI 224436 as a candidate for preclinical profiling. It has antiviral 50% effective concentrations (EC50s) of <15 nM against different HIV-1 laboratory strains and cellular cytotoxicity of >90 μM. BI 224436 also has a low, ∼2.1-fold decrease in antiviral potency in the presence of 50% human serum and, by virtue of a steep dose-response curve slope, exhibits serum-shifted EC95values ranging between 22 and 75 nM. Passage of virus in the presence of inhibitor selected for either A128T, A128N, or L102F primary resistance substitutions, all mapping to a conserved allosteric pocket on the catalytic core of integrase. BI 224436 also retains full antiviral activity against recombinant viruses encoding INSTI resistance substitutions N155S, Q148H, and E92Q. In drug combination studies performed in cellular antiviral assays, BI 224436 displays an additive effect in combination with most approved antiretrovirals, including INSTIs. BI 224436 has drug-likein vitroabsorption, distribution, metabolism, and excretion (ADME) properties, including Caco-2 cell permeability, solubility, and low cytochrome P450 inhibition. It exhibited excellent pharmacokinetic profiles in rat (clearance as a percentage of hepatic flow [CL], 0.7%; bioavailability [F], 54%), monkey (CL, 23%;F, 82%), and dog (CL, 8%;F, 81%). Based on the excellent biological and pharmacokinetic profile, BI 224436 was advanced into phase 1 clinical trials.


2019 ◽  
Vol 17 (2) ◽  
pp. 105-114
Author(s):  
Pankaj Wadhwa ◽  
Priti Jain ◽  
Arpit Patel ◽  
Shantanu Shinde ◽  
Hemant R. Jadhav

<P>Background: A series of novel 3-(1,3-dioxoisoindolin-2-yl)-N-substituted phenyl benzamide derivatives was synthesized and tested in vitro against human immunodeficiency virus type-1 Integrase (HIV-1 IN). Methods: Out of the 18 analogues, six (compounds 16c, 16h, 16i, 16m, 16n and 16r) showed significant inhibition of strand transfer by HIV-1 integrase. For these six compounds. IC50 was below 5.0 µM. In silico docking studies revealed that the presence of 2-phenyl isoindoline-1,3-dione motif was essential as it was found to interact with active site magnesium. Results: To further confirm the results, cell-based HIV-1 and HIV-2 inhibitory assay was carried out. Conclusion: These compounds possess structural features not seen in previously reported HIV-1 integrase inhibitors and thus can help further optimization of anti-HIV-1 integrase activity.</P>


2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Mabeya Sepha ◽  
Nyamache Anthony ◽  
Ngugi Caroline ◽  
Nyerere Andrew ◽  
Lihana Raphael

BACKGROUND: Antiretroviral therapy containing an integrase strand transfer inhibitor plus two Nucleoside Reverse Transcriptase inhibitors has now been recommended for treatment of HIV-1-infected patients. This thus determined possible pre-existing integrase resistance associated mutations in the integrase gene prior to introduction of integrase inhibitors combination therapy in Kenya.METHODS: Drug experienced HIV patients were enrolled at Kisii Teaching and Referral in Kenya. Blood specimens from (33) patients were collected for direct sequencing of HIV-1 polintegrase genes. Drug resistance mutations were interpreted according to the Stanford algorithm and phylogenetically analysed using insilico tools.RESULTS: From pooled 188 Kenyan HIV integrase sequences that were analysed for drug resistance, no major mutations conferring resistance to integrase inhibitors were detected. However, polymorphic accessory mutations associated with reduced susceptibility of integrase inhibitors were observed in low frequency; M50I (12.2%), T97A (3.7%), S153YG, E92G (1.6%), G140S/A/C (1.1%) and E157Q (0.5%). Phylogenetic analysis (330 sequences revealed that HIV-1 subtype A1 accounted for majority of the infections, 26 (78.8%), followed by D, 5 (15.2%) and C, 2 (6%).CONCLUSION: The integrase inhibitors will be effective in Kenya where HIV-1 subtype A1 is still the most predominant. However, occurring polymorphisms may warrant further investigation among drug experienced individuals on dolutegravir combination or integrase inhibitor treatment. 


2019 ◽  
Vol 75 (3) ◽  
pp. 648-655 ◽  
Author(s):  
Scott L Letendre ◽  
Anthony Mills ◽  
Debbie Hagins ◽  
Susan Swindells ◽  
Franco Felizarta ◽  
...  

Abstract Background Long-acting (LA) formulations of cabotegravir, an HIV integrase inhibitor, and rilpivirine, an NNRTI, are in development as monthly or 2 monthly intramuscular (IM) injections for maintenance of virological suppression. Objectives To evaluate cabotegravir and rilpivirine CSF distribution and HIV-1 RNA suppression in plasma and CSF in HIV-infected adults participating in a substudy of the Phase 2b LATTE-2 study (NCT02120352). Methods Eighteen participants receiving cabotegravir LA 400 mg + rilpivirine LA 600 mg IM [every 4 weeks (Q4W), n = 3] or cabotegravir LA 600 mg + rilpivirine LA 900 mg IM [every 8 weeks (Q8W), n = 15] with plasma HIV-1 RNA &lt;50 copies/mL enrolled. Paired steady-state CSF and plasma concentrations were evaluable in 16 participants obtained 7 (±3) days after an injection visit. HIV-1 RNA in CSF and plasma were assessed contemporaneously using commercial assays. Results Median total CSF concentrations in Q4W and Q8W groups, respectively, were 0.011 μg/mL and 0.013 μg/mL for cabotegravir (0.30% and 0.34% of the paired plasma concentrations) and 1.84 ng/mL and 1.67 ng/mL for rilpivirine (1.07% and 1.32% of paired plasma concentrations). Cabotegravir and rilpivirine total CSF concentrations exceeded their respective in vitro EC50 for WT HIV-1 (0.10 ng/mL and 0.27 ng/mL, respectively). All 16 participants had HIV-1 RNA &lt;50 copies/mL in plasma and CSF, and 15 of 16 participants had HIV-1 RNA &lt;2 copies/mL in CSF. Conclusions A dual regimen of cabotegravir LA and rilpivirine LA achieved therapeutic concentrations in the CSF resulting in effective virological control in CSF.


2012 ◽  
Vol 56 (8) ◽  
pp. 4365-4374 ◽  
Author(s):  
Frauke Christ ◽  
Stephen Shaw ◽  
Jonas Demeulemeester ◽  
Belete A. Desimmie ◽  
Arnaud Marchand ◽  
...  

ABSTRACTTargeting the HIV integrase (HIV IN) is a clinically validated approach for designing novel anti-HIV therapies. We have previously described the discovery of a novel class of integration inhibitors, 2-(quinolin-3-yl)acetic acid derivatives, blocking HIV replication at a low micromolar concentration through binding in the LEDGF/p75 binding pocket of HIV integrase, hence referred to as LEDGINs. Here we report the detailed characterization of their mode of action. The design of novel and more potent analogues with nanomolar activity enabled full virological evaluation and a profound mechanistic study. As allosteric inhibitors, LEDGINs bind to the LEDGF/p75 binding pocket in integrase, thereby blocking the interaction with LEDGF/p75 and interfering indirectly with the catalytic activity of integrase. Detailed mechanism-of-action studies reveal that the allosteric mode of inhibition is likely caused by an effect on HIV-1 integrase oligomerization. The multimodal inhibition by LEDGINs results in a block in HIV integration and in a replication deficiency of progeny virus. The allosteric nature of LEDGINs leads to synergy in combination with the clinically approved active site HIV IN strand transfer inhibitor (INSTI) raltegravir, and cross-resistance profiling proves the distinct mode of action of LEDGINs and INSTIs. The allosteric nature of inhibition and compatibility with INSTIs underline an interest in further (clinical) development of LEDGINs.


2019 ◽  
Vol 18 (32) ◽  
pp. 2800-2815 ◽  
Author(s):  
Nisha Chhokar ◽  
Sourav Kalra ◽  
Monika Chauhan ◽  
Anjana Munshi ◽  
Raj Kumar

The failure of the Integrase Strand Transfer Inhibitors (INSTIs) due to the mutations occurring at the catalytic site of HIV integrase (IN) has led to the design of allosteric integrase inhibitors (ALLINIs). Lens epithelium derived growth factor (LEDGF/p75) is the host cellular cofactor which helps chaining IN to the chromatin. The protein-protein interactions (PPIs) were observed at the allosteric site (LEDGF/p75 binding domain) between LEDGF/p75 of the host cell and IN of virus. In recent years, many small molecules such as CX04328, CHIBA-3053 and CHI-104 have been reported as LEDGF/p75-IN interaction inhibitors (LEDGINs). LEDGINs have emerged as promising therapeutics to halt the PPIs by binding at the interface of both the proteins. In the present work, we correlated the docking scores for the reported LEDGINs containing quinoline scaffold with the in vitro biological data. The hierarchal clustering method was used to divide the compounds into test and training set. The robustness of the generated model was validated by q2 and r2 for the predicted set of compounds. The generated model between the docking score and biological data was assessed to predict the activity of the hits (quinoline scaffold) obtained from virtual screening of LEDGINs providing their structureactivity relationships to aim for the generation of potent agents.


Sign in / Sign up

Export Citation Format

Share Document