scholarly journals In Vitro Activities of Ceftaroline and Comparators against Streptococcus pneumoniae Isolates from U.S. Hospitals: Results from Seven Years of the AWARE Surveillance Program (2010 to 2016)

2017 ◽  
Vol 62 (2) ◽  
Author(s):  
Michael A. Pfaller ◽  
Rodrigo E. Mendes ◽  
Leonard R. Duncan ◽  
Robert K. Flamm ◽  
Helio S. Sader

ABSTRACT We evaluated trends in Streptococcus pneumoniae antimicrobial susceptibility in United States hospitals in the 2010 to 2016 period. A total of 8,768 clinical isolates from 47 medical centers were tested for susceptibility by broth microdilution methods. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) rates decreased from 25.7% and 12.4%, respectively, in 2010 to 17.7% and 3.6%, respectively, in 2016. The susceptibilities to most comparator antimicrobial agents increased, whereas the susceptibilities to ceftaroline, levofloxacin, linezolid, and tigecycline remained stable. Ceftaroline retained potent activity against S. pneumoniae (>99.9%) with no marked variations.

2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Helio S. Sader ◽  
Mariana Castanheira ◽  
Dee Shortridge ◽  
Rodrigo E. Mendes ◽  
Robert K. Flamm

ABSTRACT The in vitro activity of ceftazidime-avibactam and many comparator agents was determined against various resistant subsets of organisms selected among 36,380 Enterobacteriaceae and 7,868 Pseudomonas aeruginosa isolates. The isolates were consecutively collected from 94 U.S. hospitals, and all isolates were tested for susceptibility by reference broth microdilution methods in a central monitoring laboratory (JMI Laboratories). Enterobacteriaceae isolates resistant to carbapenems (CRE) and/or ceftazidime-avibactam (MIC ≥ 16 μg/ml) were evaluated for the presence of genes encoding extended-spectrum β-lactamases and carbapenemases. Ceftazidime-avibactam inhibited >99.9% of all Enterobacteriaceae at the susceptible breakpoint of ≤8 μg/ml and was active against multidrug-resistant (MDR; n = 2,953; MIC50/90, 0.25/1 μg/ml; 99.2% susceptible), extensively drug-resistant (XDR; n = 448; MIC50/90, 0.5/2 μg/ml; 97.8% susceptible), and CRE (n = 513; MIC50/90, 0.5/2 μg/ml; 97.5% susceptible) isolates. Only 82.2% of MDR Enterobacteriaceae (n = 2,953) and 64.2% of ceftriaxone-nonsusceptible Klebsiella pneumoniae (n = 1,063) isolates were meropenem susceptible. Among Enterobacter cloacae (22.2% ceftazidime nonsusceptible), 99.8% of the isolates, including 99.3% of the ceftazidime-nonsusceptible isolates, were ceftazidime-avibactam susceptible. Only 23 of 36,380 Enterobacteriaceae (0.06%) isolates were ceftazidime-avibactam nonsusceptible, including 9 metallo-β-lactamase producers and 2 KPC-producing strains with porin alteration; the remaining 12 strains showed negative results for all β-lactamases tested. Ceftazidime-avibactam showed potent activity against P. aeruginosa (MIC50/90, 2/4 μg/ml; 97.1% susceptible), including MDR (MIC50/90, 4/16 μg/ml; 86.5% susceptible) isolates, and inhibited 71.8% of isolates nonsusceptible to meropenem, piperacillin-tazobactam, and ceftazidime (n = 628). In summary, ceftazidime-avibactam demonstrated potent activity against a large collection (n = 44,248) of contemporary Gram-negative bacilli isolated from U.S. patients, including organisms resistant to most currently available agents, such as CRE and meropenem-nonsusceptible P. aeruginosa.


2015 ◽  
Vol 59 (6) ◽  
pp. 3656-3659 ◽  
Author(s):  
Helio S. Sader ◽  
Mariana Castanheira ◽  
Rodrigo E. Mendes ◽  
Robert K. Flamm ◽  
David J. Farrell ◽  
...  

ABSTRACTPseudomonas aeruginosaisolates (n= 3,902) from 75 U.S. medical centers were tested against ceftazidime-avibactam and comparator agents by the reference broth microdilution method. Overall, 96.9% of the strains were susceptible (MIC, ≤8 μg/ml) to ceftazidime-avibactam, while the rates of susceptibility for ceftazidime, meropenem, and piperacillin-tazobactam were 83.8, 81.9, and 78.5%, respectively. Multidrug-resistant and extensively drug-resistant phenotypes were observed in 14.9 and 8.7% of the strains, respectively, and 81.0 and 73.7% of the strains were susceptible to ceftazidime-avibactam, respectively.


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Zhaojing Zong ◽  
Wei Jing ◽  
Jin Shi ◽  
Shu'an Wen ◽  
Tingting Zhang ◽  
...  

ABSTRACT Oxazolidinones are efficacious in treating mycobacterial infections, including tuberculosis (TB) caused by drug-resistant Mycobacterium tuberculosis. In this study, we compared the in vitro activities and MIC distributions of delpazolid, a novel oxazolidinone, and linezolid against multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) in China. Additionally, genetic mutations in 23S rRNA, rplC, and rplD genes were analyzed to reveal potential mechanisms underlying the observed oxazolidinone resistance. A total of 240 M. tuberculosis isolates were included in this study, including 120 MDR-TB isolates and 120 XDR-TB isolates. Overall, linezolid and delpazolid MIC90 values for M. tuberculosis isolates were 0.25 mg/liter and 0.5 mg/liter, respectively. Based on visual inspection, we tentatively set epidemiological cutoff (ECOFF) values for MIC determinations for linezolid and delpazolid at 1.0 mg/liter and 2.0 mg/liter, respectively. Although no significant difference in resistance rates was observed between linezolid and delpazolid among XDR-TB isolates (P > 0.05), statistical analysis revealed a significantly greater proportion of linezolid-resistant isolates than delpazolid-resistant isolates within the MDR-TB group (P = 0.036). Seven (53.85%) of 13 linezolid-resistant isolates were found to harbor mutations within the three target genes. Additionally, 1 isolate exhibited an amino acid substitution (Arg126His) within the protein encoded by rplD that contributed to high-level resistance to linezolid (MIC of >16 mg/liter), compared to a delpazolid MIC of 0.25. In conclusion, in vitro susceptibility testing revealed that delpazolid antibacterial activity was comparable to that of linezolid. A novel mutation within rplD that endowed M. tuberculosis with linezolid, but not delpazolid, resistance was identified.


2015 ◽  
Vol 59 (4) ◽  
pp. 2458-2461 ◽  
Author(s):  
Helio S. Sader ◽  
Robert K. Flamm ◽  
Jennifer M. Streit ◽  
David J. Farrell ◽  
Ronald N. Jones

ABSTRACTA total of 84,704 isolates were collected from 191 medical centers in 2009 to 2013 and tested for susceptibility to ceftaroline and comparator agents by broth microdilution methods. Ceftaroline inhibited allStaphylococcus aureusisolates at ≤2 μg/ml and was very active against methicillin-resistant strains (MIC at which 90% of the isolates tested are inhibited [MIC90], 1 μg/ml; 97.6% susceptible). AmongStreptococcus pneumoniaeisolates, the highest ceftaroline MIC was 0.5 μg/ml, and ceftaroline activity against the most commonEnterobacteriaceaespecies (MIC50, 0.12 μg/ml; 78.9% susceptible) was similar to that of ceftriaxone (MIC50, ≤0.25 μg/ml; 86.8% susceptible).


2015 ◽  
Vol 59 (6) ◽  
pp. 3263-3270 ◽  
Author(s):  
Helio S. Sader ◽  
Paul R. Rhomberg ◽  
David J. Farrell ◽  
Ronald N. Jones

ABSTRACTArbekacin is a broad-spectrum aminoglycoside licensed for systemic use in Japan and under clinical development as an inhalation solution in the United States. We evaluated the occurrence of organisms isolated from pneumonias in U.S. hospitalized patients (PHP), including ventilator-associated pneumonia (VAP), and thein vitroactivity of arbekacin. Organism frequency was evaluated from a collection of 2,203 bacterial isolates (339 from VAP) consecutively collected from 25 medical centers in 2012 through the SENTRY Antimicrobial Surveillance Program. Arbekacin activity was tested against 904 isolates from PHP collected in 2012 from 62 U.S. medical centers and 303 multidrug-resistant (MDR) organisms collected worldwide in 2009 and 2010 from various infection types. Susceptibility to arbekacin and comparator agents was evaluated by the reference broth microdilution method. The four most common organisms from PHP wereStaphylococcus aureus,Pseudomonas aeruginosa,Klebsiellaspp., andEnterobacterspp. The highest arbekacin MIC amongS. aureusisolates from PHP (43% methicillin-resistantS. aureus[MRSA]) was 4 μg/ml. AmongP. aeruginosaisolates from PHP, only one had an arbekacin MIC of >16 μg/ml (MIC50and MIC90, 1 and 4 μg/ml), and susceptibility rates for gentamicin, tobramycin, and amikacin were 88.0, 90.0, and 98.0%, respectively. Arbekacin (MIC50, 2 μg/ml) and tobramycin (MIC50, 4 μg/ml) were the most potent aminoglycosides tested againstAcinetobacter baumannii. AgainstEnterobacteriaceaefrom PHP, arbekacin and gentamicin (MIC50and MIC90, 0.25 to 1 and 1 to 8 μg/ml for both compounds) were generally more potent than tobramycin (MIC50and MIC90, 0.25 to 2 and 1 to 32 μg/ml) and amikacin (MIC50and MIC90, 1 to 2 and 2 to 32 μg/ml). Arbekacin also demonstrated potentin vitroactivity against a worldwide collection of well-characterized MDR Gram-negative and MRSA strains.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Manoon Leechawengwongs ◽  
Therdsak Prammananan ◽  
Sarinya Jaitrong ◽  
Pamaree Billamas ◽  
Nampueng Makhao ◽  
...  

ABSTRACT New fluoroquinolones (FQs) have been shown to be more active against drug-resistant Mycobacterium tuberculosis strains than early FQs, such as ofloxacin. Sitafloxacin (STFX) is a new fluoroquinolone with in vitro activity against a broad range of bacteria, including M. tuberculosis. This study aimed to determine the in vitro activity of STFX against all groups of drug-resistant strains, including multidrug-resistant M. tuberculosis (MDR M. tuberculosis), MDR M. tuberculosis with quinolone resistance (pre-XDR), and extensively drug-resistant (XDR) strains. A total of 374 drug-resistant M. tuberculosis strains were tested for drug susceptibility by the conventional proportion method, and 95 strains were randomly submitted for MIC determination using the microplate alamarBlue assay (MABA). The results revealed that all the drug-resistant strains were susceptible to STFX at a critical concentration of 2 μg/ml. Determination of the MIC90s of the strains showed different MIC levels; MDR M. tuberculosis strains had a MIC90 of 0.0625 μg/ml, whereas pre-XDR and XDR M. tuberculosis strains had identical MIC90s of 0.5 μg/ml. Common mutations within the quinolone resistance-determining region (QRDR) of gyrA and/or gyrB did not confer resistance to STFX, except that double mutations of GyrA at Ala90Val and Asp94Ala were found in strains with a MIC of 1.0 μg/ml. The results indicated that STFX had potent in vitro activity against all the groups of drug-resistant M. tuberculosis strains and should be considered a new repurposed drug for treatment of multidrug-resistant and extensively drug-resistant TB.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Helio S. Sader ◽  
Rodrigo E. Mendes ◽  
Michael A. Pfaller ◽  
Dee Shortridge ◽  
Robert K. Flamm ◽  
...  

ABSTRACT A total of 10,451 contemporary (2016) Enterobacteriaceae isolates from 84 U.S. medical centers and 116 metallo-β-lactamase- and/or OXA-48-like-producing Enterobacteriaceae isolates from other countries were tested against aztreonam-avibactam and comparators. All U.S. isolates were inhibited at aztreonam-avibactam MICs of ≤8 μg/ml (MIC50, ≤0.03 μg/ml; MIC90, 0.12 μg/ml), including Klebsiella pneumoniae carbapenemase-producing isolates (n = 102; MIC50, 0.25 μg/ml; MIC90, 0.5 μg/ml), multidrug-resistant isolates (n = 876; MIC50, 0.06 μg/ml; MIC90, 0.25 μg/ml), and extensively drug-resistant isolates (n = 111; MIC50, 0.12 μg/ml; MIC90, 0.5 μg/ml). The highest aztreonam-avibactam MIC value among ex-U.S. isolates was 4 μg/ml.


2013 ◽  
Vol 57 (7) ◽  
pp. 3178-3181 ◽  
Author(s):  
Helio S. Sader ◽  
Robert K. Flamm ◽  
Ronald N. Jones

ABSTRACTVancomycin, linezolid, and daptomycin are very active against staphylococci, but isolates with decreased susceptibility to these antimicrobial agents are isolated sporadically. A total of 19,350Staphylococcus aureusisolates (51% methicillin resistant [MRSA]) and 3,270 coagulase-negative staphylococci (CoNS) were collected consecutively from 82 U.S. medical centers from January 2008 to December 2011 and tested for susceptibility against ceftaroline and comparator agents by the reference broth microdilution method. AmongS. aureusstrains, 14 isolates (0.07%) exhibited decreased susceptibility to linezolid (MIC, ≥8 μg/ml), 18 (0.09%) to daptomycin (MIC, ≥2 μg/ml), and 369 (1.9%) to vancomycin (MIC, ≥2 μg/ml; 368 isolates at 2 μg/ml and 1 at 4 μg/ml). Fifty-one (1.6%) CoNS were linezolid resistant (MIC, ≥8 μg/ml), and four (0.12%) were daptomycin nonsusceptible (MIC, ≥2 μg/ml). Ceftaroline was very active againstS. aureusoverall (MIC50/90, 0.5/1 μg/ml; 98.5% susceptible), including MRSA (MIC50/90, 0.5/1 μg/ml; 97.2% susceptible). All daptomycin-nonsusceptible and 85.7% of linezolid-resistantS. aureusisolates were susceptible to ceftaroline. AgainstS. aureusisolates with a vancomycin MIC of ≥2 μg/ml, 91.9, 96.2, and 98.9% were susceptible to ceftaroline, daptomycin, and linezolid, respectively. CoNS strains were susceptible to ceftaroline (MIC50/90, 0.25/0.5 μg/ml; 99.1% inhibited at ≤1 μg/ml), including methicillin-resistant (MIC50/90, 0.25/0.5 μg/ml), linezolid-resistant (MIC50/90, 0.5/0.5 μg/ml), and daptomycin-nonsusceptible (4 isolates; MIC range, 0.03 to 0.12 μg/ml) strains. In conclusion, ceftaroline demonstrated potentin vitroactivity against staphylococci with reduced susceptibility to linezolid, daptomycin, or vancomycin, and it may represent a valuable treatment option for infections caused by these multidrug-resistant staphylococci.


2018 ◽  
Vol 62 (7) ◽  
Author(s):  
James A. Karlowsky ◽  
Krystyna M. Kazmierczak ◽  
Samuel K. Bouchillon ◽  
Boudewijn L. M. de Jonge ◽  
Gregory G. Stone ◽  
...  

ABSTRACT The in vitro activities of ceftazidime-avibactam and comparators against 9,149 isolates of Enterobacteriaceae and 2,038 isolates of Pseudomonas aeruginosa collected by 42 medical centers in nine countries in the Asia-Pacific region from 2012 to 2015 were determined as part of the International Network for Optimal Resistance Monitoring (INFORM) global surveillance program. Antimicrobial susceptibility testing was conducted by Clinical and Laboratory Standards Institute (CLSI) broth microdilution, and isolate subset analysis was performed on the basis of the resistant phenotypes and β-lactamase content. Ceftazidime-avibactam demonstrated potent in vitro activity (MIC, ≤8 μg/ml) against all Enterobacteriaceae tested (99.0% susceptible) and was the most active against isolates that were metallo-β-lactamase (MBL) negative (99.8% susceptible). Against P. aeruginosa , 92.6% of all isolates and 96.1% of MBL-negative isolates were susceptible to ceftazidime-avibactam (MIC, ≤8 μg/ml). The rates of susceptibility to ceftazidime-avibactam ranged from 97.0% (Philippines) to 100% (Hong Kong, South Korea) for Enterobacteriaceae and from 83.1% (Thailand) to 100% (Hong Kong) among P. aeruginosa isolates, with lower susceptibilities being observed in countries where MBLs were more frequently encountered (Philippines, Thailand). Ceftazidime-avibactam inhibited 97.2 to 100% of Enterobacteriaceae isolates, per country, that carried serine β-lactamases, including extended-spectrum β-lactamases, AmpC cephalosporinases, and carbapenemases (KPC, GES, OXA-48-like). It also inhibited 91.3% of P. aeruginosa isolates that were carbapenem nonsusceptible in which no acquired β-lactamase was detected. Among MBL-negative Enterobacteriaceae isolates that were ceftazidime nonsusceptible, meropenem nonsusceptible, colistin resistant, and multidrug resistant, ceftazidime-avibactam inhibited 96.1, 87.7, 100, and 98.8% of isolates, respectively, and among MBL-negative P. aeruginosa isolates that were ceftazidime nonsusceptible, meropenem nonsusceptible, colistin resistant, and multidrug resistant, ceftazidime-avibactam inhibited 79.6, 83.6, 83.3, and 68.2% of isolates, respectively. Overall, clinical isolates of Enterobacteriaceae and P. aeruginosa collected in nine Asia-Pacific countries from 2012 to 2015 were highly susceptible to ceftazidime-avibactam.


Sign in / Sign up

Export Citation Format

Share Document