scholarly journals In Vivo Pharmacodynamic Evaluation of Omadacycline against Staphylococcus aureus in the Neutropenic Mouse Pneumonia Model

2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Alexander J. Lepak ◽  
Miao Zhao ◽  
Karen Marchillo ◽  
Jamie VanHecker ◽  
David R. Andes

ABSTRACT Omadacycline is an effective therapy for community-acquired bacterial pneumonia (CABP). Given its potent activity against methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA), we sought to determine the pharmacodynamic activity and target pharmacokinetic/pharmacodynamic (PK/PD) exposures associated with a therapeutic effect in the neutropenic mouse pneumonia model against 10 MSSA/MRSA strains. The area under the concentration-time curve (AUC)/MIC associated with 1-log kill was noted at 24-h epithelial lining fluid (ELF) and plasma AUC/MIC exposures of ∼2 (ELF range, <0.93 to 19; plasma range, <1.06 to 17) and 2-log kill was noted at 24-h ELF and plasma AUC/MIC exposures of ∼12 (ELF range, 2.5 to 130; plasma range, 3.5 to 151).

2019 ◽  
Vol 63 (7) ◽  
Author(s):  
Alexander J. Lepak ◽  
Miao Zhao ◽  
Karen Marchillo ◽  
Jamie VanHecker ◽  
David R. Andes

ABSTRACT Omadacycline is a novel aminomethylcycline antibiotic with potent activity against Staphylococcus aureus, including methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). We investigated the pharmacodynamic activity of omadacycline against 10 MSSA/MRSA strains in a neutropenic murine thigh model. The median 24-h area under the concentration-time curve (AUC)/MIC values associated with net stasis and 1-log kill were 21.9 and 57.7, respectively.


2014 ◽  
Vol 58 (12) ◽  
pp. 7520-7526 ◽  
Author(s):  
Shawn H. MacVane ◽  
Wonhee So ◽  
David P. Nicolau ◽  
Joseph L. Kuti

ABSTRACTStaphylococcus aureus, including methicillin-susceptible (MSSA) and -resistant (MRSA) strains, is an important pathogen of bacterial pneumonia. As antibiotic concentrations at the site of infection are responsible for killing, we investigated the activity of human-simulated epithelial lining fluid (ELF) exposures of three antibiotics (ceftaroline, ceftriaxone, and vancomycin) commonly used for treatment ofS. aureuspneumonia. Anin vitropharmacodynamic model was used to simulate ELF exposures of vancomycin (1 g every 12 h [q12h]), ceftaroline (600 mg q12h and q8h), and ceftriaxone (2 g q24h and q12h). FourS. aureusisolates (2 MSSA and 2 MRSA) were evaluated over 72 h with a starting inoculum of ∼106CFU/ml. Time-kill curves were constructed, and microbiological response (change in log10CFU/ml from 0 h and the area under the bacterial killing and regrowth curve [AUBC]) was assessed in duplicate. The change in 72-h log10CFU/ml was largest for ceftaroline q8h (reductions of >3 log10CFU/ml against all strains). This regimen also achieved the lowest AUBC against all organisms (P< 0.05). Vancomycin produced reliable bacterial reductions of 0.9 to 3.3 log10CFU/ml, while the activity of ceftaroline q12h was more variable (reductions of 0.2 to 2.3 log10CFU/ml against 3 of 4 strains). Both regimens of ceftriaxone were poorly active against MSSA tested (0.1 reduction to a 1.8-log10CFU/ml increase). Against theseS. aureusisolates, ELF exposures of ceftaroline 600 mg q8h exhibited improved antibacterial activity compared with ceftaroline 600 mg q12h and vancomycin, and therefore, this q8h regimen deserves further evaluation for the treatment of bacterial pneumonia. These data also suggest that ceftriaxone should be avoided forS. aureuspneumonia.


2012 ◽  
Vol 56 (5) ◽  
pp. 2342-2346 ◽  
Author(s):  
Pamela R. Tessier ◽  
Rebecca A. Keel ◽  
Mao Hagihara ◽  
Jared L. Crandon ◽  
David P. Nicolau

ABSTRACTThe antibacterial efficacies of tedizolid phosphate (TZD), linezolid, and vancomycin regimens simulating human exposures at the infection site against methicillin-resistantStaphylococcus aureus(MRSA) were compared in anin vivomouse pneumonia model. Immunocompetent BALB/c mice were orally inoculated with one of three strains of MRSA and subsequently administered 20 mg/kg TZD every 24 hours (q24h), 120 mg/kg linezolid q12h, or 25 mg/kg vancomycin q12h over 24 h. These regimens produced epithelial lining fluid exposures comparable to human exposures observed following intravenous regimens of 200 mg TZD q24h, 600 mg linezolid q12h, and 1 g vancomycin q12h. The differences in CFU after 24 h of treatment were compared between control and treatment groups. Vehicle-dosed control groups increased in bacterial density an average of 1.1 logs. All treatments reduced the bacterial density at 24 h with an average of 1.2, 1.6, and 0.1 logs for TZD, linezolid, and vancomycin, respectively. The efficacy of TZD versus linezolid regimens against the three MRSA isolates was not statistically different (P> 0.05), although both treatments were significantly different from controls. In contrast, the vancomycin regimen was significantly different from TZD against one MRSA isolate and from linezolid against all isolates. The vancomycin regimen was less protective than either the TZD or linezolid regimens, with overall survival of 61.1% versus 94.7% or 89.5%, respectively. At human simulated exposures to epithelial lining fluid, vancomycin resulted in minimal reductions in bacterial counts and higher mortality compared to those of either TZD or linezolid. TZD and linezolid showed similar efficacies in this MRSA pneumonia model.


2015 ◽  
Vol 59 (6) ◽  
pp. 3252-3256 ◽  
Author(s):  
Liana C. Chan ◽  
Li Basuino ◽  
Etyene C. Dip ◽  
Henry F. Chambers

ABSTRACTTedizolid, the active component of the prodrug tedizolid phosphate, is a novel oxazolidinone that is approximately 4 times more active by weight than linezolid againstStaphylococcus aureusin vitro. Thein vivoefficacy of tedizolid phosphate (15 mg/kg body weight intravenous [i.v.] twice a day [b.i.d.]) was compared to those of vancomycin (30 mg/kg i.v. b.i.d.) and daptomycin (18 mg/kg i.v. once a day [q.d.]) in a rabbit model of aortic valve endocarditis (AVE) caused by methicillin-resistantS. aureusstrain COL (infection inoculum of 107CFU). Median vegetation titers of daptomycin-treated rabbits were significantly lower than those of rabbits treated with tedizolid phosphate (15 mg/kg b.i.d.) (P= 0.016), whereas titers for vancomycin-treated compared to tedizolid-treated rabbits were not different (P= 0.984). The numbers of organisms in spleen and kidney tissues were similar for all treatment groups. A dose-ranging experiment was performed with tedizolid phosphate (2, 4, and 8 mg/kg b.i.d.) compared to vancomycin (30 mg/kg b.i.d.), using a higher infecting inoculum (108CFU) to determine the lowest efficacious dose of tedizolid phosphate. Tedizolid phosphate (2 mg/kg) (equivalent to 60% of the area under the concentration-time curve from 0 to 24 h (AUC0–24) for the human 200-mg dose approved by the U.S. Food and Drug Administration) was not efficacious. Tedizolid phosphate at 4 mg/kg (equivalent to 75% of the AUC0–24for the human 400-mg dose) and 8 mg/kg produced lower vegetation titers than the control, but neither was as efficacious as vancomycin.


2015 ◽  
Vol 59 (12) ◽  
pp. 7833-7836 ◽  
Author(s):  
A. Lepak ◽  
K. Marchillo ◽  
J. VanHecker ◽  
D. Andes

ABSTRACTDalbavancin is a novel lipoglycopeptide with activity againstStaphylococcus aureus, including glycopeptide-resistant isolates. Thein vivoinvestigation reported here tested the effects of this antibiotic against sevenS. aureusisolates with higher MICs, including several vancomycin-intermediate strains. Results of 1-log kill and 2-log kill were achieved against seven and six of the isolates, respectively. The mean free-drug area under the concentration-time curve (fAUC)/MIC values for net stasis, 1-log kill, and 2-log kill were 27.1, 53.3, and 111.1, respectively.


2020 ◽  
Vol 64 (12) ◽  
Author(s):  
Yu-Feng Zhou ◽  
Ping Liu ◽  
Shu-He Dai ◽  
Jian Sun ◽  
Ya-Hong Liu ◽  
...  

ABSTRACT We determined in vivo efficacy and target PK/PD exposures of antofloxacin against Streptococcus pneumoniae and Staphylococcus aureus in the murine pneumonia model. The mean plasma free drug area under the concentration-time curve/MIC (fAUC/MIC) targets associated with stasis and 1-log10 and 2-log10 kill effects were 8.93, 19.2, and 48.1, respectively, for S. pneumoniae, whereas they were 30.5, 55.4, and 115.8, respectively, for S. aureus. The fAUC/MIC targets in murine lung epithelial lining fluids (ELF) for the same endpoints were nearly 2-fold higher than those in plasma.


2008 ◽  
Vol 52 (7) ◽  
pp. 2389-2394 ◽  
Author(s):  
Somvadee Laohavaleeson ◽  
Pamela R. Tessier ◽  
David P. Nicolau

ABSTRACT Ceftobiprole (BPR) is an investigational cephalosporin with activity against Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA) strains. The pharmacodynamic (PD) profile of BPR against S. aureus strains with a variety of susceptibility phenotypes in an immunocompromised murine pneumonia model was characterized. The BPR MICs of the test isolates ranged from 0.25 to 2 μg/ml. Pharmacokinetic (PK) studies were conducted with infected neutropenic BALB/c mice; and the BPR concentrations were measured in plasma, epithelial lining fluid (ELF), and lung tissue. PD studies with these mice were undertaken with eight S. aureus isolates (two methicillin-susceptible S. aureus strains, three hospital-acquired MRSA strains, and three community-acquired MRSA strains). Subcutaneous BPR doses of 2 to 125 mg/kg of body weight/day were administered, and the change in the number of log10 CFU/ml in lungs was evaluated after 24 h of therapy. The PD profile was characterized by using the free drug exposures (f) determined from the following parameters: the percentage of time that the concentration was greater than the MIC (T > MIC), the maximum concentration in serum/MIC, and the area under the concentration-time curve/MIC. The BPR PK parameters were linear over the dose range studied in plasma, and the ELF concentrations ranged from 60 to 94% of the free plasma concentration. fT > MIC was the parameter that best correlated with efficacy against a diverse array of S. aureus isolates in this murine pneumonia model. The 80% effective dose (ED80), ED50, and stasis exposures appeared to be similar among the isolates studied. BPR exerted maximal antibacterial effects when fT > MIC ranged from 6 to 22%, regardless of the phenotypic profile of resistance to β-lactam, fluoroquinolone, erythromycin, clindamycin, or tetracycline antibiotics.


2011 ◽  
Vol 55 (12) ◽  
pp. 5507-5511 ◽  
Author(s):  
Thomas P. Lodise ◽  
George L. Drusano ◽  
Jill M. Butterfield ◽  
Joshua Scoville ◽  
Mark Gotfried ◽  
...  

ABSTRACTAlthough vancomycin is often regarded as an agent that concentrates poorly in the lower respiratory tract, as determined from concentrations in epithelial lining fluid (ELF), few data are available. This study sought to determine the profile of vancomycin exposure in the ELF relative to plasma. Population modeling and Monte Carlo simulation were employed to estimate the penetration of vancomycin into ELF. Plasma and ELF pharmacokinetic (PK) data were obtained from 10 healthy volunteers. Concentration-time profiles in plasma and ELF were simultaneously modeled using a three-compartment model with zero-order infusion and first-order elimination and transfer using the big nonparametric adaptive grid (BigNPAG) program. Monte Carlo simulation with 9,999 subjects was performed to calculate the ELF/plasma penetration ratios by estimating the area under the concentration-time curve (AUC) in ELF (AUCELF) and plasma (AUCplasma) after a single simulated 1,000-mg dose. The mean (standard deviation) AUCELF/AUCplasmapenetration ratio was 0.675 (0.677), and the 25th, 50th, and 75th percentile penetration ratios were 0.265, 0.474, and 0.842, respectively. Our results indicate that vancomycin penetrates ELF at approximately 50% of plasma levels. To properly judge the adequacy of current doses and schedules employed in practice, future studies are needed to delineate the PK/PD (pharmacodynamics) target for vancomycin in ELF. If the PK/PD target in ELF is found to be consistent with the currently proposed target of an AUC/MIC of ≥400, suboptimal probability of target attainment would be expected when vancomycin is utilized for pneumonias due to MRSA (methicillin-resistantStaphylococcus aureus) with MICs in excess of 1 mg/liter.


2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Vien T. M. Le ◽  
Hoan N. Le ◽  
Marcos Gabriel Pinheiro ◽  
Kenneth J. Hahn ◽  
Mary L. Dinh ◽  
...  

ABSTRACT The protective efficacy of tedizolid phosphate, a novel oxazolidinone that potently inhibits bacterial protein synthesis, was compared to those of linezolid, vancomycin, and saline in a rabbit model of Staphylococcus aureus necrotizing pneumonia. Tedizolid phosphate was administered to rabbits at 6 mg/kg of body weight intravenously twice daily, which yielded values of the 24-h area under the concentration-time curve approximating those found in humans. The overall survival rate was 83% for rabbits treated with 6 mg/kg tedizolid phosphate twice daily and 83% for those treated with 50 mg/kg linezolid thrice daily (P = 0.66 by the log-rank test versus the results obtained with tedizolid phosphate). These survival rates were significantly greater than the survival rates of 17% for rabbits treated with 30 mg/kg vancomycin twice daily (P = 0.003) and 17% for rabbits treated with saline (P = 0.002). The bacterial count in the lungs of rabbits treated with tedizolid phosphate was significantly decreased compared to that in the lungs of rabbits treated with saline, although it was not significantly different from that in the lungs of rabbits treated with vancomycin or linezolid. The in vivo bacterial production of alpha-toxin and Panton-Valentine leukocidin, two key S. aureus-secreted toxins that play critical roles in the pathogenesis of necrotizing pneumonia, in the lungs of rabbits treated with tedizolid phosphate and linezolid was significantly inhibited compared to that in the lungs of rabbits treated with vancomycin or saline. Taken together, these results indicate that tedizolid phosphate is superior to vancomycin for the treatment of S. aureus necrotizing pneumonia because it inhibits the bacterial production of lung-damaging toxins at the site of infection.


2018 ◽  
Vol 62 (10) ◽  
Author(s):  
Sandrine Marchand ◽  
Matthieu Boisson ◽  
Shachi Mehta ◽  
Christophe Adier ◽  
Olivier Mimoz ◽  
...  

ABSTRACT Amikacin and gentamicin pharmacokinetic behaviors after nebulization were determined by comparing plasma and pulmonary epithelial lining fluid (ELF) concentrations in rats after intratracheal and intravenous administrations. ELF areas under concentration-time curve were 874 and 162 times higher after nebulization than after intravenous administration for amikacin and gentamicin, respectively. Even if both molecules appear to be good candidates for nebulization, these results demonstrate a much higher targeting advantage of nebulization for amikacin than for gentamicin.


Sign in / Sign up

Export Citation Format

Share Document