scholarly journals Antibacterial Properties of MagnesiumIn Vitroand in anIn VivoModel of Implant-Associated Methicillin-Resistant Staphylococcus aureus Infection

2014 ◽  
Vol 58 (12) ◽  
pp. 7586-7591 ◽  
Author(s):  
Yang Li ◽  
Guangwang Liu ◽  
Zanjing Zhai ◽  
Lina Liu ◽  
Haowei Li ◽  
...  

ABSTRACTPeriprosthetic infection remains a challenging clinical complication. We investigated the antibacterial properties of pure (99.9%) magnesium (Mg)in vitroand in anin vivorat model of implant-related infection. Mg was highly effective against methicillin-resistantStaphylococcus aureus-induced osteomyelitis and improved new peri-implant bone formation. BacterialicaAandagrRNAIII transcription levels were also assessed to characterize the mechanism underlying the antibacterial properties of the Mg implant.

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1731
Author(s):  
Yu Maw Htwe ◽  
Huashan Wang ◽  
Patrick Belvitch ◽  
Lucille Meliton ◽  
Mounica Bandela ◽  
...  

Lung endothelial dysfunction is a key feature of acute lung injury (ALI) and clinical acute respiratory distress syndrome (ARDS). Previous studies have identified the lipid-generating enzyme, group V phospholipase A2 (gVPLA2), as a mediator of lung endothelial barrier disruption and inflammation. The current study aimed to determine the role of gVPLA2 in mediating lung endothelial responses to methicillin-resistant Staphylococcus aureus (MRSA, USA300 strain), a major cause of ALI/ARDS. In vitro studies assessed the effects of gVPLA2 inhibition on lung endothelial cell (EC) permeability after exposure to heat-killed (HK) MRSA. In vivo studies assessed the effects of intratracheal live or HK-MRSA on multiple indices of ALI in wild-type (WT) and gVPLA2-deficient (KO) mice. In vitro, HK-MRSA increased gVPLA2 expression and permeability in human lung EC. Inhibition of gVPLA2 with either the PLA2 inhibitor, LY311727, or with a specific monoclonal antibody, attenuated the barrier disruption caused by HK-MRSA. LY311727 also reduced HK-MRSA-induced permeability in mouse lung EC isolated from WT but not gVPLA2-KO mice. In vivo, live MRSA caused significantly less ALI in gVPLA2 KO mice compared to WT, findings confirmed by intravital microscopy assessment in HK-MRSA-treated mice. After targeted delivery of gVPLA2 plasmid to lung endothelium using ACE antibody-conjugated liposomes, MRSA-induced ALI was significantly increased in gVPLA2-KO mice, indicating that lung endothelial expression of gVPLA2 is critical in vivo. In summary, these results demonstrate an important role for gVPLA2 in mediating MRSA-induced lung EC permeability and ALI. Thus, gVPLA2 may represent a novel therapeutic target in ALI/ARDS caused by bacterial infection.


2019 ◽  
Vol 64 (1) ◽  
Author(s):  
Sara Ceballos ◽  
Choon Kim ◽  
Yuanyuan Qian ◽  
Shahriar Mobashery ◽  
Mayland Chang ◽  
...  

ABSTRACT The in vitro activities of five quinazolinone antibacterials, compounds Q1 to Q5, were tested against 210 strains of methicillin-resistant Staphylococcus aureus (MRSA). The MIC50/MIC90 values (in μg/ml) were as follows: Q1, 0.5/2; Q2, 1/4; Q3, 2/4; Q4, 0.06/0.25; and Q5, 0.125/0.5. Several strains with high MIC values (from 8 to >32 μg/ml) for some of these compounds exhibited amino acid changes in the penicillin-binding proteins, which are targeted by these antibacterials.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Ximena Castañeda ◽  
Cristina García-de-la-Mària ◽  
Oriol Gasch ◽  
Juan M. Pericas ◽  
Yolanda Armero ◽  
...  

ABSTRACT The aim of this in vivo study was to compare the efficacy of vancomycin at standard doses (VAN-SD) to that of VAN at adjusted doses (VAN-AD) in achieving a VAN area under the curve/MIC ratio (AUC/MIC) of ≥400 against three methicillin-resistant Staphylococcus aureus (MRSA) strains with different microdilution VAN MICs in an experimental endocarditis model. The valve vegetation bacterial counts after 48 h of VAN therapy were compared, and no differences were observed between the two treatment groups for any of the three strains tested. Overall, for VAN-SD and VAN-AD, the rates of sterile vegetations were 15/45 (33.3%) and 21/49 (42.8%) (P = 0.343), while the medians (interquartile ranges [IQRs]) for log10 CFU/g of vegetation were 2 (0 to 6.9) and 2 (0 to 4.5) (P = 0.384), respectively. In conclusion, this VAN AUC/MIC pharmacodynamic target was not a good predictor of vancomycin efficacy in MRSA experimental endocarditis.


2016 ◽  
Vol 60 (10) ◽  
pp. 5688-5694 ◽  
Author(s):  
Daniel G. Meeker ◽  
Karen E. Beenken ◽  
Weston B. Mills ◽  
Allister J. Loughran ◽  
Horace J. Spencer ◽  
...  

ABSTRACTWe usedin vitroandin vivomodels of catheter-associated biofilm formation to compare the relative activity of antibiotics effective against methicillin-resistantStaphylococcus aureus(MRSA) in the specific context of an established biofilm. The results demonstrated that, underin vitroconditions, daptomycin and ceftaroline exhibited comparable activity relative to each other and greater activity than vancomycin, telavancin, oritavancin, dalbavancin, or tigecycline. This was true when assessed using established biofilms formed by the USA300 methicillin-resistant strain LAC and the USA200 methicillin-sensitive strain UAMS-1. Oxacillin exhibited greater activity against UAMS-1 than LAC, as would be expected, since LAC is an MRSA strain. However, the activity of oxacillin was less than that of daptomycin and ceftaroline even against UAMS-1. Among the lipoglycopeptides, telavancin exhibited the greatest overall activity. Specifically, telavancin exhibited greater activity than oritavancin or dalbavancin when tested against biofilms formed by LAC and was the only lipoglycopeptide capable of reducing the number of viable bacteria below the limit of detection. With biofilms formed by UAMS-1, telavancin and dalbavancin exhibited comparable activity relative to each other and greater activity than oritavancin. Importantly, ceftaroline was the only antibiotic that exhibited greater activity than vancomycin when testedin vivoin a murine model of catheter-associated biofilm formation. These results emphasize the need to consider antibiotics other than vancomycin, most notably, ceftaroline, for the treatment of biofilm-associatedS. aureusinfections, including by the matrix-based antibiotic delivery methods often employed for local antibiotic delivery in the treatment of these infections.


Sign in / Sign up

Export Citation Format

Share Document