scholarly journals Sialic Acid-Binding ProteinSp2CBMTD Protects Mice against Lethal Challenge with Emerging Influenza A (H7N9) Virus

2014 ◽  
Vol 59 (3) ◽  
pp. 1495-1504 ◽  
Author(s):  
Elena A. Govorkova ◽  
Tatiana Baranovich ◽  
Bindumadhav M. Marathe ◽  
Lei Yang ◽  
Margaret A. Taylor ◽  
...  

ABSTRACTCompounds that target the cellular factors essential for influenza virus replication represent an innovative approach to antiviral therapy.Sp2CBMTD is a genetically engineered multivalent protein that masks sialic acid-containing cellular receptors on the respiratory epithelium, which are recognized by influenza viruses. Here, we evaluated the antiviral potential ofSp2CBMTD against lethal infection in mice with an emerging A/Anhui/1/2013 (H7N9) influenza virus and addressed the mechanistic basis of its activityin vivo. Sp2CBMTD was administered to mice intranasally as a single or repeated dose (0.1, 1, 10, or 100 μg) before (day −7, −3, and/or −1) or after (6 or 24 h) H7N9 virus inoculation. A singleSp2CBMTD dose (10 or 100 μg) protected 80% to 100% of the mice when administered 7 days before the H7N9 lethal challenge. RepeatedSp2CBMTD administration conferred the highest protection, resulting in 100% survival of the mice even at the lowest dose tested (0.1 μg). When treatment began 24 h after exposure to the H7N9 virus, a single administration of 100 μg ofSp2CBMTD protected 40% of the mice from death. The administration ofSp2CBMTD induced the pulmonary expression of proinflammatory mediators (interleukin-6 [IL-6], IL-1β, RANTES, monocyte chemotactic protein-1 [MCP-1], macrophage inflammatory protein-1α [MIP-1α], and inducible protein [IP-10]) and recruited neutrophils to the respiratory tract before H7N9 virus infection, which resulted in less pronounced inflammation and rapid virus clearance from mouse lungs.Sp2CBMTD administration did not affect the virus-specific adaptive immune response, which was sufficient to protect against reinfection with a higher dose of homologous H7N9 virus or heterologous H5N1 virus. Thus,Sp2CBMTD was effective in preventing H7N9 infections in a lethal mouse model and holds promise as a prophylaxis option against zoonotic influenza viruses.

2015 ◽  
Vol 59 (8) ◽  
pp. 4962-4973 ◽  
Author(s):  
Yasushi Itoh ◽  
Shintaro Shichinohe ◽  
Misako Nakayama ◽  
Manabu Igarashi ◽  
Akihiro Ishii ◽  
...  

ABSTRACTThe number of patients infected with H7N9 influenza virus has been increasing since 2013. We examined the efficacy of neuraminidase (NA) inhibitors and the efficacy of a vaccine against an H7N9 influenza virus, A/Anhui/1/2013 (H7N9), isolated from a patient in a cynomolgus macaque model. NA inhibitors (oseltamivir and peramivir) barely reduced the total virus amount because of the emergence of resistant variants with R289K or I219T in NA [residues 289 and 219 in N9 of A/Anhui/1/2013 (H7N9) correspond to 292 and 222 in N2, respectively] in three of the six treated macaques, whereas subcutaneous immunization of an inactivated vaccine derived from A/duck/Mongolia/119/2008 (H7N9) prevented propagation of A/Anhui/1/2013 (H7N9) in all vaccinated macaques. The percentage of macaques in which variant H7N9 viruses with low sensitivity to the NA inhibitors were detected was much higher than that of macaques in which variant H5N1 highly pathogenic influenza virus was detected after treatment with one of the NA inhibitors in our previous study. The virus with R289K in NA was reported in samples from human patients, whereas that with I219T in NA was identified for the first time in this study using macaques, though no variant H7N9 virus was reported in previous studies using mice. Therefore, the macaque model enables prediction of the frequency of emerging H7N9 virus resistant to NA inhibitorsin vivo. Since H7N9 strains resistant to NA inhibitors might easily emerge compared to other influenza viruses, monitoring of the emergence of variants is required during treatment of H7N9 influenza virus infection with NA inhibitors.


2015 ◽  
Vol 89 (10) ◽  
pp. 5651-5667 ◽  
Author(s):  
Daniel Dlugolenski ◽  
Les Jones ◽  
Elizabeth Howerth ◽  
David Wentworth ◽  
S. Mark Tompkins ◽  
...  

ABSTRACTSwine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression.IMPORTANCEInfluenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment independent of differential sialic acid distribution. The findings also establish that circulating neuraminidase (NA) and PA genes could alter the pathogenic phenotype of the pandemic H1N1 virus, resulting in enhanced disease. The identification of such factors provides a framework for pandemic modeling and surveillance.


2009 ◽  
Vol 83 (8) ◽  
pp. 3754-3761 ◽  
Author(s):  
Li Qi ◽  
John C. Kash ◽  
Vivien G. Dugan ◽  
Ruixue Wang ◽  
Guozhong Jin ◽  
...  

ABSTRACT The 1918 influenza pandemic caused more than 40 million deaths and likely resulted from the introduction and adaptation of a novel avian-like virus. Influenza A virus hemagglutinins are important in host switching and virulence. Avian-adapted influenza virus hemagglutinins bind sialic acid receptors linked via α2-3 glycosidic bonds, while human-adapted hemagglutinins bind α2-6 receptors. Sequence analysis of 1918 isolates showed hemagglutinin genes with α2-6 or mixed α2-6/α2-3 binding. To characterize the role of the sialic acid binding specificity of the 1918 hemagglutinin, we evaluated in mice chimeric influenza viruses expressing wild-type and mutant hemagglutinin genes from avian and 1918 strains with differing receptor specificities. Viruses expressing 1918 hemagglutinin possessing either α2-6, α2-3, or α2-3/α2-6 sialic acid specificity were fatal to mice, with similar pathology and cellular tropism. Changing α2-3 to α2-6 binding specificity did not increase the lethality of an avian-adapted hemagglutinin. Thus, the 1918 hemagglutinin contains murine virulence determinants independent of receptor binding specificity.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 557 ◽  
Author(s):  
Li Zhang ◽  
Jungang Chen ◽  
Chang Ke ◽  
Haiwei Zhang ◽  
Shoujun Zhang ◽  
...  

Influenza virus infections can lead to viral pneumonia and acute respiratory distress syndrome in severe cases, causing significant morbidity and mortality and posing a great threat to human health. Because of the diversity of influenza virus strains and drug resistance to the current direct antiviral agents, there have been no effective drugs as yet to cure all patients infected by influenza viruses. Natural products from plants contain compounds with diverse structures that have the potential to interact with multiple host and virus factors. In this study, we identified the ethanol extract of Caesalpinia decapetala (Roth) Alston (EEC) as an inhibitor against the replication of a panel of influenza A and B viruses both on human pulmonary epithelial A549 and human monocytic U937 cells. The animal study revealed that EEC administration reduces the weight loss and improves the survival rate of mice infected with lethal influenza virus. Also, EEC treatment attenuated lung injury and reduced virus titer significantly. In conclusion, we showed that EEC has antiviral activity both in vitro and in vivo, suggesting that the plant C. decapetala has the potential to be further developed as a resource of new anti-influenza drugs.


2009 ◽  
Vol 84 (2) ◽  
pp. 940-952 ◽  
Author(s):  
S. Munier ◽  
T. Larcher ◽  
F. Cormier-Aline ◽  
D. Soubieux ◽  
B. Su ◽  
...  

ABSTRACT A deletion of about 20 amino acids in the stalk of the neuraminidase (NA) is frequently detected upon transmission of influenza A viruses from waterfowl to domestic poultry. Using reverse genetics, a recombinant virus derived from a wild duck influenza virus isolate, A/Mallard/Marquenterre/Z237/83 (MZ), and an NA stalk deletion variant (MZ-delNA) were produced. Compared to the wild type, the MZ-delNA virus showed a moderate growth advantage on avian cultured cells. In 4-week-old chickens inoculated intratracheally with the MZ-delNA virus, viral replication in the lungs, liver, and kidneys was enhanced and interstitial pneumonia lesions were more severe than with the wild-type virus. The MZ-delNA-inoculated chickens showed significantly increased levels of mRNAs encoding interleukin-6 (IL-6), transforming growth factor-β4 (TGF-β4), and CCL5 in the lungs and a higher frequency of apoptotic cells in the liver than did their MZ-inoculated counterparts. Molecular mechanisms possibly underlying the growth advantage of the MZ-delNA virus were explored. The measured enzymatic activities toward a small substrate were similar for the wild-type and deleted NA, but the MZ-delNA virus eluted from chicken erythrocytes at reduced rates. Pseudoviral particles expressing the MZ hemagglutinin in combination with the MZ-NA or MZ-delNA protein were produced from avian cultured cells with similar efficiencies, suggesting that the deletion in the NA stalk does not enhance the release of progeny virions and probably affects an earlier step of the viral cycle. Overall, our data indicate that a shortened NA stalk is a strong determinant of adaptation and virulence of waterfowl influenza viruses in chickens.


2015 ◽  
Vol 59 (10) ◽  
pp. 6007-6016 ◽  
Author(s):  
Alice W. Tsai ◽  
Colleen F. McNeil ◽  
Joshua R. Leeman ◽  
Hamilton B. Bennett ◽  
Kwame Nti-Addae ◽  
...  

ABSTRACTThrough antigenic drift and shifts, influenza virus infections continue to be an annual cause of morbidity in healthy populations and of death among elderly and at-risk patients. The emergence of highly pathogenic avian influenza viruses such as H5N1 and H7N9 and the rapid spread of the swine-origin H1N1 influenza virus in 2009 demonstrate the continued need for effective therapeutic agents for influenza. While several neuraminidase inhibitors have been developed for the treatment of influenza virus infections, these have shown a limited window for treatment initiation, and resistant variants have been noted in the population. In addition, an older class of antiviral drugs for influenza, the adamantanes, are no longer recommended for treatment due to widespread resistance. There remains a need for new influenza therapeutic agents with improved efficacy as well as an expanded window for the initiation of treatment. Azaindole compounds targeting the influenza A virus PB2 protein and demonstrating excellentin vitroandin vivoproperties have been identified. To evaluate thein vivoefficacy of these PB2 inhibitors, we utilized a mouse influenza A virus infection model. In addition to traditional endpoints, i.e., death, morbidity, and body weight loss, we measured lung function using whole-body plethysmography, and we used these data to develop a composite efficacy score that takes compound exposure into account. This model allowed the rapid identification and ranking of molecules relative to each other and to oseltamivir. The ability to identify compounds with enhanced preclinical properties provides an opportunity to develop more-effective treatments for influenza in patients.


2005 ◽  
Vol 86 (10) ◽  
pp. 2817-2821 ◽  
Author(s):  
Ana M. Falcón ◽  
Ana Fernandez-Sesma ◽  
Yurie Nakaya ◽  
Thomas M. Moran ◽  
Juan Ortín ◽  
...  

It was previously shown that two mutant influenza A viruses expressing C-terminally truncated forms of the NS1 protein (NS1-81 and NS1-110) were temperature sensitive in vitro. These viruses contain HA, NA and M genes derived from influenza A/WSN/33 H1N1 virus (mouse-adapted), and the remaining five genes from human influenza A/Victoria/3/75 virus. Mice intranasally infected with the NS1 mutant viruses showed undetectable levels of virus in lungs at day 3, whereas those infected with the NS1 wild-type control virus still had detectable levels of virus at this time. Nevertheless, the temperature-sensitive mutant viruses induced specific cellular and humoral immune responses similar to those induced by the wild-type virus. Mice immunized with the NS1 mutant viruses were protected against a lethal challenge with influenza A/WSN/33 virus. These results indicate that truncations in the NS1 protein resulting in temperature-sensitive phenotypes in vitro correlate with attenuation in vivo without compromising viral immunogenicity, an ideal characteristic for live attenuated viral vaccines.


2011 ◽  
Vol 18 (7) ◽  
pp. 1083-1090 ◽  
Author(s):  
Michael G. Wallach ◽  
Richard J. Webby ◽  
Fakhrul Islam ◽  
Stephen Walkden-Brown ◽  
Eva Emmoth ◽  
...  

ABSTRACTInfluenza viruses remain a major threat to global health due to their ability to undergo change through antigenic drift and antigenic shift. We postulated that avian IgY antibodies represent a low-cost, effective, and well-tolerated approach that can easily be scaled up to produce enormous quantities of protective antibodies. These IgY antibodies can be administered passively in humans (orally and intranasally) and can be used quickly and safely to help in the fight against an influenza pandemic. In this study, we raised IgY antibodies against H1N1, H3N2, and H5N1 influenza viruses. We demonstrated that, using whole inactivated viruses alone and in combination to immunize hens, we were able to induce a high level of anti-influenza virus IgY in the sera and eggs, which lasted for at least 2 months after two immunizations. Furthermore, we found that by use ofin vitroassays to test for the ability of IgY to inhibit hemagglutination (HI test) and virus infectivity (serum neutralization test), IgYs inhibited the homologous as well as in some cases heterologous clades and strains of viruses. Using anin vivomouse model system, we found that, when administered intranasally 1 h prior to infection, IgY to H5N1 protected 100% of the mice against lethal challenge with H5N1. Of particular interest was the finding that IgY to H5N1 cross-protected against A/Puerto Rico/8/34 (H1N1) bothin vitroandin vivo. Based on our results, we conclude that anti-influenza virus IgY can be used to help prevent influenza virus infection.


2015 ◽  
Vol 89 (14) ◽  
pp. 7224-7234 ◽  
Author(s):  
Wen-Chun Liu ◽  
Chia-Ying Lin ◽  
Yung-Ta Tsou ◽  
Jia-Tsrong Jan ◽  
Suh-Chin Wu

ABSTRACTNeuraminidase (NA), an influenza virus envelope glycoprotein, removes sialic acid from receptors for virus release from infected cells. For this study, we used a baculovirus-insect cell expression system to construct and purify recombinant NA (rNA) proteins of H5N1 (A/Vietnam/1203/2004) and pandemic H1N1 (pH1N1) (A/Texas/05/2009) influenza viruses. BALB/c mice immunized with these proteins had high titers of NA-specific IgG and NA-inhibiting (NI) antibodies against H5N1, pH1N1, H3N2, and H7N9 viruses. H5N1 rNA immunization resulted in higher quantities of NA-specific antibody-secreting B cells against H5N1 and heterologous pH1N1 viruses in the spleen. H5N1 rNA and pH1N1 rNA immunizations both provided complete protection against homologous virus challenges, with H5N1 rNA immunization providing better protection against pH1N1 virus challenges. Cross-reactive NI antibodies were further dissected via pH1N1 rNA protein immunizations with I149V (NA with a change of Ile to Val at position 149), N344Y, and I365T/S366N NA mutations. The I365T/S366N mutation of pH1N1 rNA enhanced cross-reactive NI antibodies against H5N1, H3N2, and H7N9 viruses. It is our hope that these findings provide useful information for the development of an NA-based universal influenza vaccine.IMPORTANCENeuraminidase (NA) is an influenza virus enzymatic protein that cleaves sialic acid linkages on infected cell surfaces, thus facilitating viral release and contributing to viral transmission and mucus infection. In currently available inactivated or live, attenuated influenza vaccines based on the antigenic content of hemagglutinin proteins, vaccine efficacy can be contributed partly through NA-elicited immune responses. We investigated the NA immunity of different recombinant NA (rNA) proteins associated with pH1N1 and H5N1 viruses. Our results indicate that H5N1 rNA immunization induced more potent cross-protective immunity than pH1N1 rNA immunization, and three mutated residues, I149V, I365T, and S366N, near the NA enzyme active site(s) are linked to enhanced cross-reactive NA-inhibiting antibodies against heterologous and heterosubtypic influenza A viruses. These findings provide useful information for the development of an NA-based universal influenza vaccine.


2009 ◽  
Vol 58 (7) ◽  
pp. 845-854 ◽  
Author(s):  
Weidong Zhang ◽  
Wanyi Li ◽  
Yan Li ◽  
Hong Li ◽  
Baoning Wang ◽  
...  

The high variability of influenza virus causes difficulties in the control and prevention of influenza, thus seeking a promising approach for dealing with these problems is a hot topic. Haemagglutinin (HA) and neuraminidase (NA) are major surface antigens of the influenza virus, and provide effective protection against lethal challenges with this virus. We constructed a DNA vaccine (pHA-IRES2-NA) that co-expressed both HA and NA, and compared its protective efficacy and immunogenic ability with that of singly expressed HA or NA, or a mixture of the two singly expressed proteins. Our findings showed that both HA and NA proteins expressed by pHA-IRES2-NA could be detected in vivo and in vitro. The protection of DNA vaccines was evaluated by serum antibody titres, residual lung virus titres and survival rates of the mice. In the murine model, immunization of pHA-IRES2-NA generated significant anti-HA and anti-NA antibody, increased the percentage of CD8+ cells and gamma interferon-producing CD8+ cells and the ratio of Th1/Th2 (T helper) cells, which was comparable to the effects of immunization with HA or NA DNA alone or with a mixture of HA and NA DNA. All the mice inoculated by pHA-IRES2-NA resisted the lethal challenge by homologous influenza virus and survived with low lung virus titre. In addition, previous studies reported that co-expression allowed higher-frequency transduction compared to co-transduction of separated vector systems encoding different genes. The novel HA and NA co-expression DNA vaccine is a successful alternative to using a mixture of purified HA and NA proteins or HA and NA DNA.


Sign in / Sign up

Export Citation Format

Share Document