scholarly journals Inhibition of Cellular and Viral Protein Synthesis by 3-Methyleneoxindole

1977 ◽  
Vol 11 (3) ◽  
pp. 521-527 ◽  
Author(s):  
S. L. Abreu ◽  
J. Lucas-Lenard
1971 ◽  
Vol 229 (8) ◽  
pp. 239-241 ◽  
Author(s):  
HANS CAFFIER ◽  
HESCHEL J. RASKAS ◽  
J. THOMAS PARSONS ◽  
MAURICE GREEN

Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 499 ◽  
Author(s):  
Shelby Powell Kesterson ◽  
Jeffery Ringiesn ◽  
Vikram N. Vakharia ◽  
Brian S. Shepherd ◽  
Douglas W. Leaman ◽  
...  

Viral hemorrhagic septicemia virus (VHSV) is one of the most deadly infectious fish pathogens, posing a serious threat to the aquaculture industry and freshwater ecosystems worldwide. Previous work showed that VHSV sub-genotype IVb suppresses host innate immune responses, but the exact mechanism by which VHSV IVb inhibits antiviral response remains incompletely characterized. As with other novirhabdoviruses, VHSV IVb contains a unique and highly variable nonvirion (NV) gene, which is implicated in viral replication, virus-induced apoptosis and regulating interferon (IFN) production. However, the molecular mechanisms underlying the role of IVb NV gene in regulating viral or cellular processes is poorly understood. Compared to the wild-type recombinant (rWT) VHSV, mutant VHSV lacking a functional IVb NV reduced IFN expression and compromised innate immune response of the host cells by inhibiting translation. VHSV IVb infection increased phosphorylated eukaryotic initiation factor 2α (p-eIF2α), resulting in host translation shutoff. However, VHSV IVb protein synthesis proceeds despite increasing phosphorylation of eIF2α. During VHSV IVb infection, eIF2α phosphorylation was mediated via PKR-like endoplasmic reticulum kinase (PERK) and was required for efficient viral protein synthesis, but shutoff of host translation and IFN signaling was independent of p-eIF2α. Similarly, IVb NV null VHSV infection induced less p-eIF2α, but exhibited decreased viral protein synthesis despite increased levels of viral mRNA. These findings show a role for IVb NV in VHSV pathogenesis by utilizing the PERK-eIF2α pathway for viral-mediated host shutoff and interferon signaling to regulate host cell response.


Cell ◽  
1977 ◽  
Vol 12 (1) ◽  
pp. 73-81 ◽  
Author(s):  
Emanuel Yakobson ◽  
Carol Prives ◽  
Jacob R. Hartman ◽  
Ernest Winocour ◽  
Michel Revel

2009 ◽  
Vol 84 (2) ◽  
pp. 1124-1138 ◽  
Author(s):  
Julianne L. Garrey ◽  
Yun-Young Lee ◽  
Hilda H. T. Au ◽  
Martin Bushell ◽  
Eric Jan

ABSTRACT The dicistrovirus is a positive-strand single-stranded RNA virus that possesses two internal ribosome entry sites (IRES) that direct translation of distinct open reading frames encoding the viral structural and nonstructural proteins. Through an unusual mechanism, the intergenic region (IGR) IRES responsible for viral structural protein expression mimics a tRNA to directly recruit the ribosome and set the ribosome into translational elongation. In this study, we explored the mechanism of host translational shutoff in Drosophila S2 cells infected by the dicistrovirus, cricket paralysis virus (CrPV). CrPV infection of S2 cells results in host translational shutoff concomitant with an increase in viral protein synthesis. CrPV infection resulted in the dissociation of eukaryotic translation initiation factor 4G (eIF4G) and eIF4E early in infection and the induction of deIF2α phosphorylation at 3 h postinfection, which lags after the initial inhibition of host translation. Forced dephosphorylation of deIF2α by overexpression of dGADD34, which activates protein phosphatase I, did not prevent translational shutoff nor alter virus production, demonstrating that deIF2α phosphorylation is dispensable for host translational shutoff. However, premature induction of deIF2α phosphorylation by thapsigargin treatment early in infection reduced viral protein synthesis and replication. Finally, translation mediated by the 5′ untranslated region (5′UTR) and the IGR IRES were resistant to impairment of eIF4F or eIF2 in translation extracts. These results support a model by which the alteration of the deIF4F complex contribute to the shutoff of host translation during CrPV infection, thereby promoting viral protein synthesis via the CrPV 5′UTR and IGR IRES.


2018 ◽  
Author(s):  
Eric S. Pringle ◽  
Carolyn-Ann Robinson ◽  
Nicolas Crapoulet ◽  
Andrea L-A. Monjo ◽  
Katrina Bouzanis ◽  
...  

ABSTRACTHerpesvirus genomes are decoded by host RNA polymerase II, generating messenger ribonucleic acids (mRNAs) that are post-transcriptionally modified and exported to the cytoplasm. These viral mRNAs have 5 ′ -m7GTP caps and poly(A) tails that should permit assembly of canonical eIF4F cap-binding complexes to initiate protein synthesis. However, we have shown that chemical disruption of eIF4F does not impede KSHV lytic replication, suggesting that alternative translation initiation mechanisms support viral protein synthesis. Here, using polysome profiling analysis, we confirmed that eIF4F disassembly did not affect the efficient translation of viral mRNAs during lytic replication, whereas a large fraction of host mRNAs remained eIF4F-dependent. Lytic replication altered multiple host translation initiation factors (TIFs), causing caspase-dependent cleavage of eIF2α and eIF4G1 and decreasing levels of eIF4G2 and eIF4G3. Non-eIF4F TIFs NCBP1, eIF4E2 and eIF4G2 associated with actively translating messenger ribonucleoprotein (mRNP) complexes during KSHV lytic replication, but their depletion by RNA silencing did not affect virion production, suggesting that the virus does not exclusively rely on one of these alternative TIFs for efficient viral protein synthesis. METTL3, an N6-methyladenosine (m6A) methyltransferase that modifies mRNAs and influences translational efficiency, was dispensable for early viral gene expression and genome replication but required for late gene expression and virion production. METTL3 was also subject to caspase-dependent degradation during lytic replication, suggesting that its positive effect on KSHV late gene expression may be indirect. Taken together, our findings reveal extensive remodelling of TIFs during lytic replication, which may help sustain efficient viral protein synthesis in the context of host shutoff.IMPORTANCEViruses use host cell protein synthesis machinery to create viral proteins. Herpesviruses have evolved a variety of ways to gain control over this host machinery to ensure priority synthesis of viral proteins and diminished synthesis of host proteins with antiviral properties. We have shown that a herpesvirus called KSHV disrupts normal cellular control of protein synthesis. A host cell protein complex called eIF4F starts translation of most cellular mRNAs, but we observed it is dispensable for efficient synthesis of viral proteins. Several proteins involved in alternative modes of translation initiation were likewise dispensable. However, an enzyme called METTL3 that modifies mRNAs is required for efficient synthesis of certain late KSHV proteins and productive infection. We observed caspase-dependent degradation of several host cell translation initiation proteins during infection, suggesting that the virus alters pools of available factors to favour efficient viral protein synthesis at the expense of host protein synthesis.


Sign in / Sign up

Export Citation Format

Share Document