scholarly journals Efficiency of nanoparticles as a carrier system for antiviral agents in human immunodeficiency virus-infected human monocytes/macrophages in vitro.

1996 ◽  
Vol 40 (6) ◽  
pp. 1467-1471 ◽  
Author(s):  
A R Bender ◽  
H von Briesen ◽  
J Kreuter ◽  
I B Duncan ◽  
H Rübsamen-Waigmann

Polyhexylcyanoacrylate nanoparticles loaded with either the human immunodeficiency virus (HIV) protease inhibitor saquinavir (Ro 31-8959) or the nucleoside analog zalcitabine (2',3'-dideoxycytidine) were prepared by emulsion polymerization and tested for antiviral activity in primary human monocytes/macrophages in vitro. Both nanoparticulate formulations led to a dose-dependent reduction of HIV type 1 antigen production. While nanoparticle-bound zalcitabine showed no superiority to an aqueous solution of the drug, a significantly higher efficacy was observed with saquinavir-loaded nanoparticles. In acutely infected cells, an aqueous solution of saquinavir showed little antiviral activity at concentrations below 10 nM, whereas the nanoparticulate formulation exhibited a good antiviral effect at a concentration of 1 nM and a still-significant antigen reduction at 0.1 nM (50% inhibitory concentrations = 4.23 nM for the free drug and 0.39 nM for the nanoparticle-bound drug). At a concentration of 100 nM, saquinavir was completely inactive in chronically HIV-infected macrophages, but when bound to nanoparticles it caused a 35% decrease in antigen production. Using nanoparticles as a drug carrier system could improve the delivery of antiviral agents to the mononuclear phagocyte system in vivo, overcoming pharmacokinetic problems and enhancing the activities of drugs for the treatment of HIV infection and AIDS.

2003 ◽  
Vol 14 (4) ◽  
pp. 177-182 ◽  
Author(s):  
Christophe Galtier ◽  
Sylvie Mavel ◽  
Robert Snoeck ◽  
Graciela Andreï ◽  
Christophe Pannecouque ◽  
...  

The synthesis of novel substituted 3-aralkylth-iomethylimidazo[1,2- b]pyridazines is reported. All of the synthesized compounds are devoid of antiviral activity against the replication of human immunodeficiency virus. However, compounds 6-chloro-8-methyl-3-phenethylthioimidazo[1,2- b]pyridazine and 6-chloro-2-methyl-3-phenethyl-thioimidazo[1,2- b]pyridazine are potent inhibitors of the replication of human cytomegalovirus in vitro, while compounds 6-chloro-2-methyl-3-benzylthiomethylimidazo[1,2- b]pyridazine and 6-chloro-2-methyl-3-phenethyl-thioimidazo[1,2- b]pyridazineare inhibitors of the replication of varicella-zoster virus. The results presented here suggest that compound 10 should be considered as a new lead in the development of antiviral agents.


2007 ◽  
Vol 51 (11) ◽  
pp. 4036-4043 ◽  
Author(s):  
Serge Dandache ◽  
Guy Sévigny ◽  
Jocelyn Yelle ◽  
Brent R. Stranix ◽  
Neil Parkin ◽  
...  

ABSTRACT Despite the success of highly active antiretroviral therapy, the current emergence and spread of drug-resistant variants of human immunodeficiency virus (HIV) stress the need for new inhibitors with distinct properties. We designed, produced, and screened a library of compounds based on an original l-lysine scaffold for their potentials as HIV type 1 (HIV-1) protease inhibitors (PI). One candidate compound, PL-100, emerged as a specific and noncytotoxic PI that exhibited potent inhibition of HIV-1 protease and viral replication in vitro (Ki , ∼36 pM, and 50% effective concentration [EC50], ∼16 nM, respectively). To confirm that PL-100 possessed a favorable resistance profile, we performed a cross-resistance study using a panel of 63 viral strains from PI-experienced patients selected for the presence of primary PI mutations known to confer resistance to multiple PIs now in clinical use. The results showed that PL-100 retained excellent antiviral activity against almost all of these PI-resistant viruses and that its performance in this regard was superior to those of atazanavir, amprenavir, indinavir, lopinavir, nelfinavir, and saquinavir. In almost every case, the increase in the EC50 for PL-100 observed with viruses containing multiple mutations in protease was far less than that obtained with the other drugs tested. These data underscore the potential for PL-100 to be used in the treatment of drug-resistant HIV disease and argue for its further development.


2003 ◽  
Vol 47 (10) ◽  
pp. 3123-3129 ◽  
Author(s):  
Yasuhiro Koh ◽  
Hirotomo Nakata ◽  
Kenji Maeda ◽  
Hiromi Ogata ◽  
Geoffrey Bilcer ◽  
...  

ABSTRACT We designed, synthesized, and identified UIC-94017 (TMC114), a novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) containing a 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane (bis-THF) and a sulfonamide isostere which is extremely potent against laboratory HIV-1 strains and primary clinical isolates (50% inhibitory concentration [IC50], ∼0.003 μM; IC90, ∼0.009 μM) with minimal cytotoxicity (50% cytotoxic concentration for CD4+ MT-2 cells, 74 μM). UIC-94017 blocked the infectivity and replication of each of HIV-1NL4-3 variants exposed to and selected for resistance to saquinavir, indinavir, nelfinavir, or ritonavir at concentrations up to 5 μM (IC50s, 0.003 to 0.029 μM), although it was less active against HIV-1NL4-3 variants selected for resistance to amprenavir (IC50, 0.22 μM). UIC-94017 was also potent against multi-PI-resistant clinical HIV-1 variants isolated from patients who had no response to existing antiviral regimens after having received a variety of antiviral agents. Structural analyses revealed that the close contact of UIC-94017 with the main chains of the protease active-site amino acids (Asp-29 and Asp-30) is important for its potency and wide spectrum of activity against multi-PI-resistant HIV-1 variants. Considering the favorable pharmacokinetics of UIC-94017 when administered with ritonavir, the present data warrant that UIC-94017 be further developed as a potential therapeutic agent for the treatment of primary and multi-PI-resistant HIV-1 infections.


1997 ◽  
Vol 41 (2) ◽  
pp. 394-400 ◽  
Author(s):  
P J Tummino ◽  
P J Harvey ◽  
T McQuade ◽  
J Domagala ◽  
R Gogliotti ◽  
...  

It has been shown previously by our group and others that a series of four disulfide benzamides with cellular anti-human immunodeficiency virus (HIV) activity can eject zinc from HIV type 1 nucleocapsid protein (NCp7) in vitro while analogs without antiviral activity do not. We also found that the zinc ejection activity correlates with the loss of the ability of NCp7 to bind to HIV psi RNA in vitro. These observations indicate that the antiviral disulfide benzamides may act at a novel retroviral target of action, i.e., the nucleocapsid protein. The present studies examine the relationship among disulfide benzamide structure, in vitro NCp7 zinc ejection activity, and antiviral activity for a larger series of compounds. All of the antiviral disulfide benzamides were found to eject NCp7 zinc, while some disulfide benzamides with zinc ejection activity are not antiviral. Utilizing the thiol reagent 5,5'-dithiobis(2-nitrobenzoic acid), it was determined that the o-amido-phenyl disulfides being studied cyclize in aqueous solution to form benzisothiazolones. A series of benzisothiazolones, which are stable in solution in the absence of dithiothreitol, were found to eject NCp7 zinc at a rate similar to that of their disulfide benzamide analogs and to possess similar antiviral activity. It was also found that the relative rates of HIV inactivation by various disulfide benzamides and benzisothiazolones correlate with their relative kinetic rates of NCp7 zinc ejection, which is consistent with the nucleocapsid protein being the target of action of these compounds.


2007 ◽  
Vol 51 (9) ◽  
pp. 3147-3154 ◽  
Author(s):  
Richard Hazen ◽  
Robert Harvey ◽  
Robert Ferris ◽  
Charles Craig ◽  
Phillip Yates ◽  
...  

ABSTRACT Brecanavir, a novel tyrosyl-based arylsulfonamide, high-affinity, human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), has been evaluated for anti-HIV activity in several in vitro assays. Preclinical assessment of brecanavir indicated that this compound potently inhibited HIV-1 in cell culture assays with 50% effective concentrations (EC50s) of 0.2 to 0.53 nM and was equally active against HIV strains utilizing either the CXCR4 or CCR5 coreceptor, as was found with other PIs. The presence of up to 40% human serum decreased the anti-HIV-1 activity of brecanavir by 5.2-fold, but under these conditions the compound retained single-digit nanomolar EC50s. When brecanavir was tested in combination with nucleoside reverse transcriptase inhibitors, the antiviral activity of brecanavir was synergistic with the effects of stavudine and additive to the effects of zidovudine, tenofovir, dideoxycytidine, didanosine, adefovir, abacavir, lamivudine, and emtricitabine. Brecanavir was synergistic with the nonnucleoside reverse transcriptase inhibitor nevirapine or delavirdine and was additive to the effects of efavirenz. In combination with other PIs, brecanavir was additive to the activities of indinavir, lopinavir, nelfinavir, ritonavir, amprenavir, saquinavir, and atazanavir. Clinical HIV isolates from PI-experienced patients were evaluated for sensitivity to brecanavir and other PIs in a recombinant virus assay. Brecanavir had a <5-fold increase in EC50s against 80% of patient isolates tested and had a greater mean in vitro potency than amprenavir, indinavir, lopinavir, atazanavir, tipranavir, and darunavir. Brecanavir is by a substantial margin the most potent and broadly active antiviral agent among the PIs tested in vitro.


2001 ◽  
Vol 45 (4) ◽  
pp. 1086-1093 ◽  
Author(s):  
Kanyin E. Zhang ◽  
Ellen Wu ◽  
Amy K. Patick ◽  
Bradley Kerr ◽  
Mark Zorbas ◽  
...  

ABSTRACT Nelfinavir mesylate (Viracept, formally AG1343) is a potent and orally bioavailable human immunodeficiency virus (HIV) type 1 (HIV-1) protease inhibitor (K i = 2 nM) and is being widely prescribed in combination with HIV reverse transcriptase inhibitors for the treatment of HIV infection. The current studies evaluated the presence of metabolites circulating in plasma following the oral administration of nelfinavir to healthy volunteers and HIV-infected patients, as well as the levels in plasma and antiviral activities of these metabolites. The results showed that the parent drug was the major circulating chemical species, followed in decreasing abundance by its hydroxy-t-butylamide metabolite (M8) and 3′-methoxy-4′-hydroxynelfinavir (M1). Antiviral assays with HIV-1 strain RF-infected CEM-SS cells showed that the 50% effective concentrations (EC50) of nelfinavir, M8, and M1 were 30, 34, and 151 nM, respectively, and that the corresponding EC50 against another HIV-1 strain, IIIB, in MT-2 cells were 60, 86, and 653 nM. Therefore, apparently similar in vitro antiviral activities were demonstrated for nelfinavir and M8, whereas an approximately 5- to 11-fold-lower level of antiviral activity was observed for M1. The active metabolite, M8, showed a degree of binding to human plasma proteins similar to that of nelfinavir (ca. 98%). Concentrations in plasma of nelfinavir and its metabolites in 10 HIV-positive patients receiving nelfinavir therapy (750 mg three times per day) were determined by a liquid chromatography tandem mass spectrometry assay. At steady state (day 28), the mean plasma nelfinavir concentrations ranged from 1.73 to 4.96 μM and the M8 concentrations ranged from 0.55 to 1.96 μM, whereas the M1 concentrations were low and ranged from 0.09 to 0.19 μM. In conclusion, the findings from the current studies suggest that, in humans, nelfinavir forms an active metabolite circulating at appreciable levels in plasma. The active metabolite M8 may account for some of the antiviral activity associated with nelfinavir in the treatment of HIV disease.


Sign in / Sign up

Export Citation Format

Share Document