scholarly journals Activities of Trovafloxacin, Gatifloxacin, Clinafloxacin, Sparfloxacin, Levofloxacin, and Ciprofloxacin against Penicillin-Resistant Streptococcus pneumoniae in an In Vitro Infection Model

2000 ◽  
Vol 44 (3) ◽  
pp. 598-601 ◽  
Author(s):  
Ellie Hershberger ◽  
Michael J. Rybak

ABSTRACT We adapted an in vitro pharmacodynamic model of infection to incorporate infected fibrin clots. The bactericidal activities of various fluoroquinolones against two strains of penicillin-resistantStreptococcus pneumoniae were studied over a 48-h period. Bacteria were prepared in Muller-Hinton broth by using colonies from a 24-h tryptic soy agar plus 5% sheep blood plate and were added to a mixture of cryoprecipitate (80%) and thrombin (10%) to achieve approximately 106 CFU of organism per fibrin clot. The fibrin clots were suspended into the models and removed, in triplicate, at various time points over 48 h. Control models were also conducted to characterize the growth of S. pneumoniae in the growth medium without antibiotic. Trovafloxacin, gatifloxacin, clinafloxacin, sparfloxacin, levofloxacin, and ciprofloxacin were administered to simulate their pharmacokinetic profiles in humans. Fibrin clot samples were also plated onto antibiotic-containing tryptic soy agar plus 5% lysed horse blood to detect resistance. The newer fluoroquinolones demonstrated better activity than ciprofloxacin against both isolates. In conclusion, the newer quinolones demonstrated significant activity against penicillin-resistant S. pneumoniae, with standard dosing resulting in area under the concentration-time curve/MIC ratios and peak concentration/MIC ratios that resulted in 99.9% killing against these isolates.

2001 ◽  
Vol 45 (3) ◽  
pp. 673-678 ◽  
Author(s):  
Michael E. Klepser ◽  
Erika J. Ernst ◽  
C. Rosemarie Petzold ◽  
Paul Rhomberg ◽  
Gary V. Doern

ABSTRACT Several new quinolones that exhibit enhanced in vitro activity against Streptococcus pneumoniae have been developed. Using a dynamic in vitro model, we generated time-kill data for ciprofloxacin, clinafloxacin, grepafloxacin, levofloxacin, moxifloxacin, and trovafloxacin against three isolates of quinolone-susceptible S. pneumoniae. Three pharmacokinetic profiles were simulated for each of the study agents (0.1, 1, and 10 times the area under the concentration-time curve [AUC]). Target 24-h AUCs were based upon human pharmacokinetic data resulting from the maximal daily doses of each agent. Ciprofloxacin was the least active agent against all three isolates. With regimens that simulated the human 24-h AUC, ciprofloxacin resulted in an initial, modest decline in the numbers of CFU per milliliter; however, by 48 h the numbers of CFU per milliliter returned to or exceeded the starting inoculum. At the AUC, levofloxacin resulted in variable bacteriostatic and bactericidal activities against the isolates. The remaining agents yielded bactericidal (99.9% reduction) activity by 48 h with regimens that simulated the AUC. At 0.1 time the AUC ciprofloxacin and levofloxacin produced no inhibitory effect, grepafloxacin exhibited bacteriostatic activity, trovafloxacin had mixed static and cidal activities, and clinafloxacin and moxifloxacin caused significant reductions in the numbers of CFU per milliliter by 48 h. All six agents produced cidal activity at 10 times the AUC. In this dynamic in vitro model of infection, the quinolones demonstrated various degrees of activity against S. pneumoniae. The rank order of activity, with respect to bactericidal effect, was ciprofloxacin (least active) ≪ levofloxacin < grepafloxacin, trovafloxacin < clinafloxacin and moxifloxacin (most active). The rank order of the agents with respect to the selection of resistance was ciprofloxacin (most likely) > grepafloxacin, moxifloxacin, and trovafloxacin > levofloxacin > clinafloxacin.


2016 ◽  
Vol 60 (6) ◽  
pp. 3626-3632 ◽  
Author(s):  
A. J. Lepak ◽  
P. Seiler ◽  
J. P. Surivet ◽  
D. Ritz ◽  
C. Kohl ◽  
...  

ACT-387042 and ACT-292706 are two novel bacterial topoisomerase inhibitors with broad-spectrum activity against Gram-positive and -negative bacteria, including methicillin-resistantStaphylococcus aureusand penicillin- and fluoroquinolone-resistantStreptococcus pneumoniae. We used the neutropenic murine thigh infection model to characterize the pharmacokinetics (PK)/pharmacodynamics (PD) of these investigational compounds against a group of 10S. aureusandS. pneumoniaeisolates with phenotypic resistance to beta-lactams and fluoroquinolones. Thein vitroactivities of the two compounds were very similar (MIC range, 0.03 to 0.125 mg/liter). Plasma pharmacokinetics were determined for each compound by using four escalating doses administered by the subcutaneous route. In treatment studies, mice had 107.4to 108CFU/thigh at the start of therapy with ACT-387042 and 106.7to 108.3CFU/thigh at the start of therapy with ACT-292706. A dose-response relationship was observed with all isolates over the dose range. Maximal kill approached 3 to 4 log10CFU/thigh compared to the burden at the start of therapy for the highest doses examined. There was a strong relationship between the PK/PD index AUC/MIC ratio (area under the concentration-time curve over 24 h in the steady state divided by the MIC) and therapeutic efficacy in the model (R2, 0.63 to 0.82). The 24-h free-drug AUC/MIC ratios associated with net stasis for ACT-387042 againstS. aureusandS. pneumoniaewere 43 and 10, respectively. The 24-h free-drug AUC/MIC ratios associated with net stasis for ACT-292706 againstS. aureusandS. pneumoniaewere 69 and 25, respectively. The stasis PD targets were significantly lower forS. pneumoniae(P< 0.05) for both compounds. The 1-log-kill AUC/MIC ratio targets were ∼2- to 4-fold higher than stasis targets. Methicillin, penicillin, or ciprofloxacin resistance did not alter the magnitude of the AUC/MIC ratio required for efficacy. These results should be helpful in the design of clinical trials for topoisomerase inhibitors.


1996 ◽  
Vol 40 (5) ◽  
pp. 1148-1152 ◽  
Author(s):  
D M Cappelletty ◽  
M J Rybak

We examined the bactericidal activities of penicillin, cefprozil, cefixime, cefaclor, and loracarbef against three clinical isolates of Streptococcus pneumoniae which were susceptible, moderately susceptible, and resistant to penicillin. An in vitro two-compartment glass infection model was used to simulate human pharmacokinetics in the presence of bacteria. Also, changes in organism susceptibility and development of resistant subpopulations were evaluated. Simulated pediatric dosage regimens and target peak concentrations in the central compartment were as follows: penicillin V-potassium, 26 mg/kg of body weight every 6 h (q6h) and 14 micrograms/ml; cefaclor, 13.4 mg/kg q8h and 16 micrograms/ml; loracarbef, 15 mg/kg q12h and 19 micrograms/ml; cefprozil, 15 mg/kg q12h and 11 micrograms/ml; and cefixime, 8mg/kg q24h and 4 micrograms/ml. Targeted half-lives of each agent were 1 h for penicillin, cefaclor, and loracarbef; 1.3 h for cefprozil; and 3.5 h for cefixime. Growth controls were performed at two different pump rates, 0.8 and 2.0 ml/min (half-lives = 3.5 and 1 h, respectively). Each isolate demonstrated autolysis at the lower rate which was attributed to a decreased supply of fresh nutrients available to the organisms in the infection compartment. Against the susceptible isolate, the time to 99.9% killing was statistically significant between penicillin V-potassium and both cefaclor and cefixime (P < 0.029). Loracarbef never achieved a 99.9% reduction in the inoculum. At 48 h penicillin, cefprozil, and cefaclor were equivalent in extent of killing. Against the intermediately resistant isolate, cefprozil was superior to all other regimens with respect to rate of killing (P < 0.013) and extent of killing at 24 h (P < 0.0003). At 48 h penicillin, cefprozil, and cefaclor were equivalent in extent of killing. All of the regimens exhibited inferior activity against this penicillin-resistant isolate. A 99.9% kill was never obtained with any of the regimens, nor was there an appreciable decrease in the colony counts. In conclusion, it appears that cefprozil, penicillin, and cefaclor are effective therapies against sensitive and even intermediately sensitive isolates of S. pneumoniae. However, none of the oral therapies appear to be of any benefit against penicillin-resistant isolates. The in vitro model may be an effective tool in evaluating other multiple-dose therapies against this fastidious organism, since the continual supply of fresh medium maintains the viability of S. pneumoniae with minimal stationary-phase autolysis.


2013 ◽  
Vol 57 (7) ◽  
pp. 2942-2947 ◽  
Author(s):  
Wang Liang ◽  
Yuan-cheng Chen ◽  
Yu-ran Cao ◽  
Xiao-fang Liu ◽  
Jun Huang ◽  
...  

ABSTRACTThe aim of this paper was to investigate the pharmacokinetics (PK) and pharmacodynamics (PD) of nemonoxacin, a novel nonfluorinated quinolone, againstStreptococcus pneumoniaein vitro. A modified infection model was used to simulate the pharmacokinetics of nemonoxacin following scaling of single oral doses and multiple oral dosing. FourS. pneumoniaestrains with different penicillin sensitivities were selected, and the drug efficacy was quantified by the change in log colony counts within 24 h. A sigmoid maximum-effect (Emax) model was used to analyze the relationship between PK/PD parameters and drug effect. Analysis indicated that the killing pattern of nemonoxacin shows a dualism which is mainly concentration dependent when the MIC is low and that the better PK/PD index should be the area under the concentration-time curve for the free, unbound fraction of the drug divided by the MIC (fAUC0–24/MIC), which means that giving the total daily amount of drug as one dose is appropriate under those conditions. When the MIC is high, the time (T) dependency is important and the valid PK/PD index should be the cumulative percentage of a 24-h period in which the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions (f%T>MIC), which means that to split the maximum daily dose into several separate doses will benefit the eradication of the bacteria. To obtain a 3-log10-unit decrease, the target values offAUC0–24/MIC andf%T>MIC are 47.05 and 53.4%, respectively.


2003 ◽  
Vol 47 (3) ◽  
pp. 1132-1134 ◽  
Author(s):  
Melinda M. Neuhauser ◽  
Jennifer L. Prause ◽  
Larry H. Danziger ◽  
Susan L. Pendland

ABSTRACT The bactericidal activities of ABT-773, a new ketolide, were compared to those of cefuroxime and amoxicillin-clavulanate against 10 strains of Streptococcus pneumoniae containing the ermB gene. MICs and time-kill curves were determined in duplicate per NCCLS guidelines with cation-adjusted Mueller-Hinton broth with 3% lysed horse blood. Viable counts were done at 0, 2, 6, and 24 h. Antibiotic concentrations tested were two and eight times the MIC. ABT-773 MICs ranged from 0.008 to 1.0 μg/ml. Bactericidal activity was observed with ABT-773 at eight times the MIC against 4 of 10 strains at 24 h compared to 10 of 10 strains with the beta-lactam antibiotics.


2004 ◽  
Vol 48 (8) ◽  
pp. 2951-2957 ◽  
Author(s):  
Ramesh Jayaram ◽  
Radha. K. Shandil ◽  
Sheshagiri Gaonkar ◽  
Parvinder Kaur ◽  
B. L. Suresh ◽  
...  

ABSTRACT Limited data exist on the pharmacokinetic-pharmacodynamic (PK-PD) parameters of the bactericidal activities of the available antimycobacterial drugs. We report on the PK-PD relationships for isoniazid. Isoniazid exhibited concentration (C)-dependent killing of Mycobacterium tuberculosis H37Rv in vitro, with a maximum reduction of 4 log10 CFU/ml. In these studies, 50% of the maximum effect was achieved at a C/MIC ratio of 0.5, and the maximum effect did not increase with exposure times of up to 21 days. Conversely, isoniazid produced less than a 0.5-log10 CFU/ml reduction in two different intracellular infection models (J774A.1 murine macrophages and whole human blood). In a murine model of aerosol infection, isoniazid therapy for 6 days produced a reduction of 1.4 log10 CFU/lung. Dose fractionation studies demonstrated that the 24-h area under the concentration-time curve/MIC (r 2 = 0.83) correlated best with the bactericidal efficacy, followed by the maximum concentration of drug in serum/MIC (r 2 = 0.73).


2005 ◽  
Vol 49 (1) ◽  
pp. 188-194 ◽  
Author(s):  
Pamela R. Tessier ◽  
Holly M. Mattoes ◽  
Prachi K. Dandekar ◽  
Charles H. Nightingale ◽  
David P. Nicolau

ABSTRACT The new ketolide telithromycin has potent in vitro activity against Streptococcus pneumoniae, including strains resistant to penicillin, macrolides, and fluoroquinolones. The aim of the present study was to define the pharmacodynamic profile of telithromycin against S. pneumoniae strains with various resistance profiles in an in vivo system. Ten S. pneumoniae strains were studied; seven exhibited penicillin resistance, six demonstrated macrolide resistance, and two exhibited gatifloxacin resistance. The telithromycin MICs for all isolates were ≤0.5 μg/ml. Using the murine thigh infection model, CD-1/ICR mice were rendered neutropenic and were then inoculated with 105 to 106 CFU of S. pneumoniae per thigh. Telithromycin was administered orally at doses ranging from 25 to 800 mg/kg of body weight/day, with the doses administered one, two, three, or four times a day. The activity of telithromycin was assessed by determination of the change in the bacterial density in thigh tissue after 24 h of treatment for each treatment group and the untreated controls. Pharmacokinetic studies of telithromycin were conducted in infected, neutropenic animals. The levels of protein binding by telithromycin in mice ranged from 70 to 95% over the observed range of pharmacokinetic concentrations. By using either the total or the free concentrations of telithromycin, the area under the concentration-time curve (AUC)/MIC ratio was a strong determinant of the response against S. pneumoniae, regardless of the phenotypic resistance profile. The maximal efficacy (the 95% effective dose) against this cohort of S. pneumoniae strains and bacterial inhibition (stasis) of telithromycin were predicted by ratios of the AUC for the free drug concentration/MIC of approximately 1,000 and 200, respectively.


2019 ◽  
Vol 19 (8) ◽  
pp. 633-644 ◽  
Author(s):  
Komal Kalani ◽  
Sarfaraz Alam ◽  
Vinita Chaturvedi ◽  
Shyam Singh ◽  
Feroz Khan ◽  
...  

Introduction: As a part of our drug discovery program for anti-tubercular agents, dihydroartemisinin (DHA-1) was screened against Mtb H37Rv, which showed moderate anti-tubercular activity (>25.0 µg/mL). These results prompted us to carry out the chemical transformation of DHA-1 into various derivatives and study their antitubercular potential. Materials and Methods: DHA-1 was semi-synthetically converted into four new acyl derivatives (DHA-1A – DHA-1D) and in-vitro evaluated for their anti-tubercular potential against Mycobacterium tuberculosis H37Rv virulent strain. The derivatives, DHA-1C (12-O-(4-nitro) benzoyl; MIC 12.5 µg/mL) and DHA-1D (12-O-chloro acetyl; MIC 3.12µg/mL) showed significant activity against the pathogen. Results: In silico studies of the most active derivative (DHA-1D) showed interaction with ARG448 inhibiting the mycobacterium enzymes. Additionally, it showed no cytotoxicity towards the Vero C1008 cells and Mouse bone marrow derived macrophages. Conclusion: DHA-1D killed 62% intracellular M. tuberculosis in Mouse bone marrow macrophage infection model. To the best of our knowledge, this is the first-ever report on the antitubercular potential of dihydroartemisinin and its derivatives. Since dihydroartemisinin is widely used as an antimalarial drug; these results may be of great help in anti-tubercular drug development from a very common, inexpensive, and non-toxic natural product.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 347
Author(s):  
Zsuzsa Bagoly ◽  
Barbara Baráth ◽  
Rita Orbán-Kálmándi ◽  
István Szegedi ◽  
Réka Bogáti ◽  
...  

Cross-linking of α2-plasmin inhibitor (α2-PI) to fibrin by activated factor XIII (FXIIIa) is essential for the inhibition of fibrinolysis. Little is known about the factors modifying α2-PI incorporation into the fibrin clot and whether the extent of incorporation has clinical consequences. Herein we calculated the extent of α2-PI incorporation by measuring α2-PI antigen levels from plasma and serum obtained after clotting the plasma by thrombin and Ca2+. The modifying effect of FXIII was studied by spiking of FXIII-A-deficient plasma with purified plasma FXIII. Fibrinogen, FXIII, α2-PI incorporation, in vitro clot-lysis, soluble fibroblast activation protein and α2-PI p.Arg6Trp polymorphism were measured from samples of 57 acute ischemic stroke patients obtained before thrombolysis and of 26 healthy controls. Increasing FXIII levels even at levels above the upper limit of normal increased α2-PI incorporation into the fibrin clot. α2-PI incorporation of controls and patients with good outcomes did not differ significantly (49.4 ± 4.6% vs. 47.4 ± 6.7%, p = 1.000), however it was significantly lower in patients suffering post-lysis intracranial hemorrhage (37.3 ± 14.0%, p = 0.004). In conclusion, increased FXIII levels resulted in elevated incorporation of α2-PI into fibrin clots. In stroke patients undergoing intravenous thrombolysis treatment, α2-PI incorporation shows an association with the outcome of therapy, particularly with thrombolysis-associated intracranial hemorrhage.


Sign in / Sign up

Export Citation Format

Share Document