efflux pump inhibition
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 32)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 12 (6) ◽  
pp. 7523-7531

Phytochemical studies on Croton species have identified the presence of secondary metabolites responsible for a wide variety of pharmacological activities, among them antimicrobial activity. Research for new substances with antimicrobial activity derived from natural products can give a major contribution to human health worldwide by finding more efficient and fewer toxic formulas in the race against pathogenic microorganisms' resistance. Among bacterial pathogens, Staphylococcus aureus species, despite being present in the skin and nasal mucosa, can cause many infections and diseases. These opportunists reach debilitated people in hospitals and are challenging to treat. Here, we performed the structural characterization, determination of antibiotic activity, and MepA efflux pump inhibition potential against S. aureus of the chalcone (2E, 4E) -1- (2-hydroxy-3,4,6-trimethoxyphenyl)-5-phenylpenta-2,4-dien-1-one, derived from natural products 2-hydroxy-3,4,6-trimethoxyacetophenone isolated from Croton anisodontus and cinnamaldehyde. The chalcone was synthesized by the Claisen-Schmidt condensation. In addition, microbiological tests were performed to investigate the antibacterial activity, modulator potential, and efflux pump inhibition against the S. aureus multi-resistant strains. MIC values obtained to chalcone were not clinically relevant (MIC ≥ 1024 µg/mL). However, chalcone hampers the binding of the antibiotic to the binding site of the MepA efflux pump. It acts as a competitive inhibitor, being expelled from the bacteria in place of the antibiotic and potentiating ciprofloxacin's action against multidrug-resistant bacterial strains of K2068. Therefore, chalcone can be used as a base for substance design with antibiotic modifying activity.


Antibiotics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1075
Author(s):  
Katarina Šimunović ◽  
Julia Solnier ◽  
Fabian Alperth ◽  
Olaf Kunert ◽  
Sonja Smole Smole Možina ◽  
...  

Antibiotic resistance is a growing problem and may become the next major global health crisis if no timely actions are taken. Mycobacterial infections are widespread and, due to antibiotic resistance, also hard to treat and a major cause of mortality. Natural compounds have the potential to increase antibiotic effectiveness due to their resistance modulatory and antimicrobial effects. In this study, Peucedanum ostruthium extracts, fractions, and isolated compounds were investigated regarding their antimicrobial and resistance-modulatory effects as well as efflux pump inhibition in Mycobacterium smegmatis. P. ostruthium extracts were found to have anti-mycobacterial potential and resistance modulating effects on ethidium bromide activity. The major antibacterial effect was attributed to ostruthin, and we found that the more lipophilic the substrate, the greater the antimicrobial effect. Imperatorin caused potent modulatory effects by interfering with the action of the major LfrA efflux pump in M. smegmatis. The plant P. ostruthuim has a complex effect on M. smegmatis, including antibacterial, efflux pump inhibition, resistance modulation, and membrane permeabilization, and its major constituents, ostruthin and imperatorin, have a distinct role in these effects. This makes P. ostruthium and its coumarins promising therapeutics to consider in the fight against drug-resistant mycobacteria.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1312
Author(s):  
Ivan Bodoev ◽  
Maja Malakhova ◽  
Julia Bespyatykh ◽  
Dmitry Bespiatykh ◽  
Georgij Arapidi ◽  
...  

There is growing concern about the emergence and spread of multidrug-resistant Neisseria gonorrhoeae. To effectively control antibiotic-resistant bacterial pathogens, it is necessary to develop new antimicrobials and to understand the resistance mechanisms to existing antibiotics. In this study, we discovered the unexpected onset of drug resistance in N. gonorrhoeae caused by amino acid substitutions in the periplasmic chaperone SurA and the β-barrel assembly machinery component BamA. Here, we investigated the i19.05 clinical isolate with mutations in corresponding genes along with reduced susceptibility to penicillin, tetracycline, and azithromycin. The mutant strain NG05 (surAmut bamAmut, and penAmut) was obtained using the pan-susceptible n01.08 clinical isolate as a recipient in the transformation procedure. Comparative proteomic analysis of NG05 and n01.08 strains revealed significantly increased levels of other chaperones, Skp and FkpA, and some transport proteins. Efflux pump inhibition experiments demonstrated that the reduction in sensitivity was achieved due to the activity of efflux pumps. We hypothesize that the described mutations in the surA and bamA genes cause the qualitative and quantitative changes of periplasmic chaperones, which in turn alters the function of synthesized cell envelope proteins.


2021 ◽  
Vol 4 (9) ◽  
pp. 9799-9810
Author(s):  
Ioanna Eleftheriadou ◽  
Kleoniki Giannousi ◽  
Efthymia Protonotariou ◽  
Lemonia Skoura ◽  
Minas Arsenakis ◽  
...  

Author(s):  
Gopalakrishnan Thamilselvan ◽  
Hema Bhagavathi Sarveswari ◽  
Sahana Vasudevan ◽  
Alex Stanley ◽  
Karthi Shanmugam ◽  
...  

Efflux pumps are one of the predominant microbial resistant mechanisms leading to the development of multidrug resistance. In Staphylococcus aureus, overexpression of NorA protein enables the efflux of antibiotics belonging to the class of fluoroquinolones and, thus, makes S. aureus resistant. Hence, NorA efflux pumps are being extensively exploited as the potential drug target to evade bacterial resistance and resensitize bacteria to the existing antibiotics. Although several molecules are reported to inhibit NorA efflux pump effectively, boronic acid derivatives were shown to have promising NorA efflux pump inhibition. In this regard, the current study exploits 6-(3-phenylpropoxy)pyridine-3-boronic acid to further improve the activity and reduce cytotoxicity using the bioisostere approach, a classical medicinal chemistry concept. Using the SWISS-Bioisostere online tool, from the parent compound, 42 compounds were obtained upon the replacement of the boronic acid. The 42 compounds were docked with modeled NorA protein, and key molecular interactions of the prominent compounds were assessed. The top hit compounds were further analyzed for their drug-like properties using ADMET studies. The identified potent lead, 5-nitro-2-(3-phenylpropoxy)pyridine (5-NPPP), was synthesized, and in vitro efficacy studies have been proven to show enhanced efflux inhibition, thus acting as a potent antibiotic breaker to resensitize S. aureus without elucidating any cytotoxic effect to the host Hep-G2 cell lines.


Author(s):  
Cristina Rodrigues dos Santos Barbosa ◽  
Jackelyne Roberta Scherf ◽  
Thiago Sampaio de Freitas ◽  
Irwin Rose Alencar de Menezes ◽  
Raimundo Luiz Silva Pereira ◽  
...  

Author(s):  
Dumrul Gülen ◽  
Birol Şafak ◽  
Berna Erdal ◽  
Betül Günaydın

Background and Objectives: The frequency of multiple resistant bacterial infections, including carbapenems, is increasing worldwide. As the decrease in treatment options causes difficulties in treatment, interest in new antimicrobials is increasing. One of the promising natural ingredients is curcumin. It is known to be effective in bacteria such as Pseudomonas aeruginosa, Escherichia coli, Burkholderia pseudomallei through efflux pump inhibition, toxin inhibition and enzymes. However, because its bioavailability is poor, it seffectiveness occurs in combination with antibiotics. In the study, the interaction of meropenem and curcumin in carbapenemase producing strains of Klebsiella pneumoniae was tested. Materials and Methods: Thirty-nine Klebsiella pneumoniae isolates, resistant to meropenem, were used in this study. From those 15 MBL, 6 KPC, 17 OXA-48 and 1 AmpC resistance pattern were detected by combination disk method. Meropenem and Curcumin MIC values were determined by liquid microdilution. Checkerboard liquid microdilution was used to determine the synergy between meropenem and curcumin. Results: Synergistic effects were observed in 4 isolates producing MBL, 3 isolates producing KPC, 4 isolates producing OXA-48, and 1 isolates producing AmpC (totally 12 isolates) according to the calculated FICI. No antagonistic effects were observed in any isolates. Conclusion: Curcumin was thought to be an alternative antimicrobial in combination therapies that would positively contribute to the treatment of bacterial infection. The effectiveness of this combination should be confirmed by other in vitro and clinical studies.


2021 ◽  
Vol 14 (3) ◽  
Author(s):  
Choong Ki Hong ◽  
Joon Kim ◽  
Ga-Yeon Kim

Background: Acinetobacter baumannii is the causative agent in various types of hospital-acquired infections, including respiratory, urinary tract, and wound infections. Objectives: This study investigated the primary mechanisms underlying quinolone resistance in A. baumannii strains, isolated from samples collected from general hospitals. Methods: Ninety-eight strains of A. baumannii were isolated from clinical specimens from general hospitals from 2017 – 2019. Antimicrobial susceptibility, efflux pump inhibition tests, multilocus sequence typing (MLST), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analyses were conducted on 64 strains, and the blaoxa-51-like gene sequence was detected. Results: In the antimicrobial susceptibility test, 78.1% (n = 50) of the strains exhibited resistance to ciprofloxacin, a quinolone antibiotic, and 57.8% (n = 37) strains were multidrug resistant (MDR). For 18 strains, the minimum inhibitory concentration of ciprofloxacin reduced in presence of an efflux pump inhibitor. Sequence analysis revealed that in 50 strains of A. baumannii, the codon for serine (TCA) in gyrA was replaced by that for leucine (TTA), whereas in 43 strains, the codon for serine (TCG) in parC was replaced by that for leucine (TTG). Multilocus sequence typing analysis confirmed 18 sequence types, and allelic number analysis showed the presence of nine gyrB alleles, with gyrB3 showing the highest frequency (62.5%). Conclusions: The findings of this study will be useful in improving treatment efficiency and preventing the spread of A. baumannii (both MDR and non-MDR strains).


Sign in / Sign up

Export Citation Format

Share Document