scholarly journals In Vitro Activities of Ertapenem (MK-0826) against Recent Clinical Bacteria Collected in Europe and Australia

2001 ◽  
Vol 45 (6) ◽  
pp. 1860-1867 ◽  
Author(s):  
David M. Livermore ◽  
Michael W. Carter ◽  
Simone Bagel ◽  
Bernd Wiedemann ◽  
Fernando Baquero ◽  
...  

ABSTRACT Ertapenem (MK-0826, L-749,345) is a 1-β-methyl carbapenem with a long serum half-life. Its in vitro activity was determined by broth microdilution against 3,478 bacteria from 12 centers in Europe and Australia, with imipenem, cefepime, ceftriaxone, and piperacillin-tazobactam used as comparators. Ertapenem was the most active agent tested against members of the familyEnterobacteriaceae, with MICs at which 90% of isolates are inhibited (MIC90s) of ≤1 μg/ml for all species. Ertapenem also was more active than imipenem against fastidious gram-negative bacteria and Moraxella spp.; on the other hand, ertapenem was slightly less active than imipenem against streptococci, methicillin-susceptible staphylococci, and anaerobes, but its MIC90s for these groups remained ≤0.5 μg/ml.Acinetobacter spp. and Pseudomonas aeruginosawere also much less susceptible to ertapenem than imipenem, and mostEnterococcus faecalis strains were resistant. Ertapenem resistance, based on a provisional NCCLS MIC breakpoint of ≥16 μg/ml, was seen in only 3 of 1,611 strains of the familyEnterobacteriaceae tested, all of them Enterobacter aerogenes. Resistance was also seen in 2 of 135 anaerobes, comprising 1 Bacteroides fragilis strain and 1Clostridium difficile strain. Ertapenem breakpoints for streptococci have not been established, but an unofficial susceptibility breakpoint of ≤2 μg/ml was adopted for clinical trials to generate corresponding clinical response data for isolates for which MICs were as high as 2 μg/ml. Of 234 Streptococcus pneumoniae strains tested, 2 required ertapenem MICs of 2 μg/ml and one required an MIC of 4 μg/ml, among 67 non-Streptococcus pyogenes, non-Streptococcus pneumoniae streptococci, single isolates required ertapenem MICs of 2 and 16 μg/ml. These streptococci also had diminished susceptibilities to other β-lactams, including imipenem as well as ertapenem. The Etest and disk diffusion gave susceptibility test results in good agreement with those of the broth microdilution method for ertapenem.

2002 ◽  
Vol 46 (3) ◽  
pp. 783-786 ◽  
Author(s):  
Virginia D. Shortridge ◽  
Ping Zhong ◽  
Zhensheng Cao ◽  
Jill M. Beyer ◽  
Laurel S. Almer ◽  
...  

ABSTRACT The activity of a new ketolide, ABT-773, was compared to the activity of the ketolide telithromycin (HMR-3647) against over 600 gram-positive clinical isolates, including 356 Streptococcus pneumoniae, 167 Staphylococcus aureus, and 136 Streptococcus pyogenes isolates. Macrolide-susceptible isolates as well as macrolide-resistant isolates with ribosomal methylase (Erm), macrolide efflux (Mef), and ribosomal mutations were tested using the NCCLS reference broth microdilution method. Both compounds were extremely active against macrolide-susceptible isolates, with the minimum inhibitory concentrations at which 90% of the isolates tested were inhibited (MIC90s) for susceptible streptococci and staphylococci ranging from 0.002 to 0.03 μg/ml for ABT-773 and 0.008 to 0.06 μg/ml for telithromycin. ABT-773 had increased activities against macrolide-resistant S. pneumoniae (Erm MIC90, 0.015 μg/ml; Mef MIC90, 0.12 μg/ml) compared to those of telithromycin (Erm MIC90, 0.12 μg/ml; Mef MIC90, 1 μg/ml). Both compounds were active against strains with rRNA or ribosomal protein mutations (MIC90, 0.12 μg/ml). ABT-773 was also more active against macrolide-resistant S. pyogenes (ABT-773 Erm MIC90, 0.5 μg/ml; ABT-773 Mef MIC90, 0.12 μg/ml; telithromycin Erm MIC90, >8 μg/ml; telithromycin Mef MIC90, 1.0 μg/ml). Both compounds lacked activity against constitutive macrolide-resistant Staphylococcus aureus but had good activities against inducibly resistant Staphylococcus aureus (ABT-773 MIC90, 0.06 μg/ml; telithromycin MIC90, 0.5 μg/ml). ABT-773 has superior activity against macrolide-resistant streptococci compared to that of telithromycin.


2006 ◽  
Vol 50 (12) ◽  
pp. 4027-4029 ◽  
Author(s):  
Lucio Vera-Cabrera ◽  
Barbara A. Brown-Elliott ◽  
Richard J. Wallace ◽  
Jorge Ocampo-Candiani ◽  
Oliverio Welsh ◽  
...  

ABSTRACT DA-7867 and DA-7157 are oxazolidinones active against pathogenic aerobic actinomycetes including Nocardia spp. and Mycobacterium tuberculosis. However, the activity of these drugs against nontuberculous mycobacterium (NTM) species is not known. In this work, we compared the susceptibilities of 122 clinical isolates and 29 reference species of both rapidly growing and slowly growing mycobacteria to linezolid, DA-7867, and DA-7157 by the broth microdilution method. The MICs for 50 and 90% of the strains tested (MIC50s and MIC90s, respectively) of DA-7867 and DA-7157 were lower than those of linezolid. In all of the cases, a MIC90 of <8 μg/ml was observed for all of the species tested in both groups of NTM. For M. kansasii and M. marinum isolates, the MIC90s of both DA-7867 and DA-7157 were less than 0.5 μg/ml. These results demonstrate the potential of these compounds to treat NTM infections.


2000 ◽  
Vol 44 (1) ◽  
pp. 226-229 ◽  
Author(s):  
Francesco Barchiesi ◽  
Daniela Arzeni ◽  
Annette W. Fothergill ◽  
Luigi Falconi Di Francesco ◽  
Francesca Caselli ◽  
...  

ABSTRACT A broth microdilution method performed in accordance with the National Committee for Clinical Laboratory Standards guidelines was used to compare the in vitro activity of the new antifungal triazole SCH 56592 (SCH) to that of fluconazole (FLC), itraconazole (ITC), and ketoconazole (KETO) against 257 clinical yeast isolates. They included 220 isolates belonging to 12 different species of Candida, 15 isolates each of Cryptococcus neoformans andSaccharomyces cerevisiae, and seven isolates ofRhodotorula rubra. The MICs of SCH at which 50% (MIC50) and 90% (MIC90) of the isolates were inhibited were 0.06 and 2.0 μg/ml, respectively. In general, SCH was considerably more active than FLC (MIC50 and MIC90 of 1.0 and 64 μg/ml, respectively) and slightly more active than either ITC (MIC50 and MIC90 of 0.25 and 2.0 μg/ml, respectively) and KETO (MIC50 and MIC90 of 0.125 and 4.0 μg/ml, respectively). Our in vitro data suggest that SCH has significant potential for clinical development.


2015 ◽  
Vol 59 (6) ◽  
pp. 3675-3682 ◽  
Author(s):  
B. Risslegger ◽  
C. Lass-Flörl ◽  
G. Blum ◽  
M. Lackner

ABSTRACTFor antifungal susceptibility testing of nonsporulating or poorly sporulating dermatophytes, a fragmented-mycelium inoculum preparation method was established and compared to broth microdilution testing according to CLSI and EUCAST guidelines. Moreover, thein vitroactivity of new antifungal agents against dermatophytes was evaluated. Agreement between the mycelial inoculum method and the CLSI broth microdilution method was high (93% to 100%). Echinocandins (minimal effective concentration [MEC], ≤0.5 mg/liter) and posaconazole (MIC, ≤3.00 mg/liter) showed good activity against all tested dermatophytes.


1997 ◽  
Vol 41 (1) ◽  
pp. 129-134 ◽  
Author(s):  
E L Fasola ◽  
S Bajaksouzian ◽  
P C Appelbaum ◽  
M R Jacobs

Susceptibilities of 124 strains of Streptococcus pneumoniae to erythromycin and clindamycin were determined by the National Committee for the Clinical Laboratory Standards (NCCLS) broth microdilution method, with incubation for 20 to 24 h in ambient air and with modifications of this method by incubation for up to 48 h in air and CO2. Strains were also tested by agar dilution, E-test, and disk diffusion; good correlation was obtained with these methods, with clear separation into bimodal populations of susceptible and resistant stains. The broth microdilution method, however, using incubation in air for 24 h (NCCLS method), misclassified 4 of 92 erythromycin-resistant strains (1 as susceptible and 3 as intermediate) and 25 of 58 clindamycin-resistant strains (all as susceptible). With the exception of one strain with clindamycin, susceptible and resistant strains were correctly classified by the microdilution method with incubation in CO2 for 24 h or in ambient air for 48 h. Disk diffusion, agar dilution, and E-test methods with incubation in 5% CO2 are therefore reliable methods for susceptibility testing of pneumococci against these agents. However, the NCCLS microdilution method, which specifies incubation for 20 to 24 h in ambient air, produced significant very major errors (43%) clindamycin. Modification of the microdilution method by incubation in 5% CO2 or by extension of incubation time in ambient air to 48 h corrected these errors. Disk diffusion, however, was shown to be a simple, convenient, and reliable method for susceptibility testing of pneumococci to erythromycin and clindamycin and is suggested as the method of choice for these agents.


1997 ◽  
Vol 41 (5) ◽  
pp. 1156-1157 ◽  
Author(s):  
O Uzun ◽  
S Kocagöz ◽  
Y Cetinkaya ◽  
S Arikan ◽  
S Unal

The in vitro activity of LY303366, a new echinocandin derivative, was evaluated with 191 yeast isolates by a broth microdilution method. The MICs at which 50% of the isolates were inhibited were 0.125 microg/ml for Candida albicans and C. tropicalis, 0.25 microg/ml for C. krusei, C. kefyr, and C. glabrata, and 2.0 microg/ml for C. parapsilosis.


2002 ◽  
Vol 46 (9) ◽  
pp. 3039-3041 ◽  
Author(s):  
Sofia Perea ◽  
Gloria Gonzalez ◽  
Annette W. Fothergill ◽  
William R. Kirkpatrick ◽  
Michael G. Rinaldi ◽  
...  

ABSTRACT The interaction between caspofungin acetate and voriconazole was studied in vitro by using 48 clinical Aspergillus spp. isolates obtained from patients with invasive aspergillosis. MICs were determined by the NCCLS broth microdilution method. Synergy, defined as a fractional inhibitory concentration (FIC) index of <1, was detected in 87.5% of the interactions; an additive effect, defined as an FIC index of 1.0, was observed in 4.2% of the interactions; and a subadditive effect, defined as an FIC index of 1.0 to 2.0, was found in 8.3% of the interactions. No antagonism was observed. Animal models are required to validate the in vivo significance of these in vitro data presented for the combination of caspofungin and voriconazole.


2012 ◽  
Vol 56 (12) ◽  
pp. 6319-6323 ◽  
Author(s):  
Ellie J. C. Goldstein ◽  
Diane M. Citron ◽  
C. Vreni Merriam ◽  
Kerin L. Tyrrell

ABSTRACTMore than 5 million Americans are bitten by animals, usually dogs, annually. Bite patients comprise ∼1% of all patients who visit emergency departments (300,000/year), and approximately 10,000 require hospitalization and intravenous antibiotics. Ceftaroline is the bioactive component of the prodrug ceftaroline fosamil, which is FDA approved for the treatment of acute bacterial skin and skin structure infections (ABSSSIs), including those containing methicillin-resistantStaphylococcus aureus(MRSA). There are noin vitrodata about the activity of ceftaroline againstPasteurella multocidasubsp.multocidaandPasteurella multocidasubsp.septica, otherPasteurellaspp., or other bite wound isolates. We therefore studied thein vitroactivity of ceftaroline against 243 animal bite isolates. MICs were determined using the broth microdilution method according to CLSI guidelines. Comparator drugs included cefazolin, ceftriaxone, ertapenem, ampicillin-sulbactam, azithromycin, doxycycline, and sulfamethoxazole-trimethoprim (SMX-TMP). Ceftaroline was the most active agent against all 5Pasteurellaspecies, includingP. multocidasubsp.multocidaandP. multocidasubsp.septica, with a maximum MIC of ≤0.008 μg/ml; more active than ceftriaxone and ertapenem (MIC90s, ≤0.015 μg/ml); and more active than cefazolin (MIC90, 0.5 μg/ml) doxycycline (MIC90, 0.125 μg/ml), azithromycin (MIC90, 0.5 μg/ml), ampicillin-sulbactam (MIC90, 0.125 μg/ml), and SMX-TMP (MIC90, 0.125 μg/ml). Ceftaroline was also very active against allS. aureusisolates (MIC90, 0.125 μg/ml) and otherStaphylococcusandStreptococcusspecies, with a maximum MIC of 0.125 μg/ml against all bite isolates tested. Ceftaroline has potential clinical utility against infections involvingP. multocida, otherPasteurellaspecies, and aerobic Gram-positive isolates, includingS. aureus.


Sign in / Sign up

Export Citation Format

Share Document