scholarly journals Antifungal Activities of Posaconazole, Ravuconazole, and Voriconazole Compared to Those of Itraconazole and Amphotericin B against 239 Clinical Isolates of Aspergillus spp. and Other Filamentous Fungi: Report from SENTRY Antimicrobial Surveillance Program, 2000

2002 ◽  
Vol 46 (4) ◽  
pp. 1032-1037 ◽  
Author(s):  
M. A. Pfaller ◽  
S. A. Messer ◽  
R. J. Hollis ◽  
R. N. Jones

ABSTRACT Posaconazole, ravuconazole, and voriconazole are new triazole derivatives that possess potent, broad-spectrum antifungal activity. We evaluated the in vitro activity of these investigational triazoles compared with that of itraconazole and amphotericin B against 239 clinical isolates of filamentous fungi from the SENTRY Program, including Aspergillus spp. (198 isolates), Fusarium spp. (7 isolates), Penicillium spp. (19 isolates), Rhizopus spp. (4 isolates), Mucor spp. (2 isolates), and miscellaneous species (9 isolates). The isolates were obtained from 16 different medical centers in the United States and Canada between January and December 2000. In vitro susceptibility testing was performed using the microdilution broth method outlined in the National Committee for Clinical Laboratory Standards M38-P document. Overall, posaconazole was the most active compound, inhibiting 94% of isolates at a MIC of ≤1 μg/ml, followed by voriconazole (91%), amphotericin B (89%), ravuconazole (88%), and itraconazole (70%). All three new triazoles demonstrated excellent activity (MIC, ≤1 μg/ml) against Aspergillus spp. (114 Aspergillus fumigatus, 22 Aspergillus niger, 13 Aspergillus flavus, 9 Aspergillus versicolor, 8 Aspergillus terreus, and 32 Aspergillus spp.): posaconazole (98%), voriconazole (98%), ravuconazole (92%), amphotericin B (89%), and itraconazole (72%). None of the triazoles were active against Fusarium spp. (MIC at which 50% of the isolates tested were inhibited [MIC50], >8 μg/ml) or Mucor spp. (MIC50, >8 μg/ml). Posaconazole and ravuconazole were more active than voriconazole against Rhizopus spp. (MIC50, 1 to 2 μg/ml versus >8 μg/ml, respectively). Based on these results, all three new triazoles exhibited promising activity against Aspergillus spp. and other less commonly encountered isolates of filamentous fungi. The clinical value of these in vitro data remains to be seen, and in vitro-in vivo correlation is needed for both new and established antifungal agents. Surveillance efforts should be expanded in order to monitor the spectrum of filamentous fungal pathogens and their in vitro susceptibility as these new antifungal agents are introduced into clinical use.

2001 ◽  
Vol 45 (11) ◽  
pp. 3065-3069 ◽  
Author(s):  
Mary E. Brandt ◽  
Michael A. Pfaller ◽  
Rana A. Hajjeh ◽  
Richard J. Hamill ◽  
Peter G. Pappas ◽  
...  

ABSTRACT The antifungal drug susceptibilities of two collections ofCryptococcus neoformans isolates obtained through active laboratory-based surveillance from 1992 to 1994 (368 isolates) and 1996 to 1998 (364 isolates) were determined. The MICs of fluconazole, itraconazole, and flucytosine were determined by the National Committee for Clinical Laboratory Standards broth microdilution method; amphotericin B MICs were determined by the E-test. Our results showed that the MIC ranges, the MICs at which 50% of isolates are inhibited (MIC50s), and the MIC90s of these four antifungal agents did not change from 1992 to 1998. In addition, very small numbers of isolates showed elevated MICs suggestive of in vitro resistance. The MICs of amphotericin B were elevated (≥2 μg/ml) for 2 isolates, and the MICs of flucytosine were elevated (≥32 μg/ml) for 14 isolates. Among the azoles, the fluconazole MIC was elevated (≥64 μg/ml) for 8 isolates and the itraconazole MIC (≥1 μg/ml) was elevated for 45 isolates. Analysis of 172 serial isolates from 71 patients showed little change in the fluconazole MIC over time. For isolates from 58 patients (82% of serial cases) there was either no change or a twofold change in the fluconazole MIC. In contrast, for isolates from seven patients (12% of serial cases) the increase in the MIC was at least fourfold. For isolates from another patient there was a 32-fold decrease in the fluconazole MIC over a 1-month period. We conclude that in vitro resistance to antifungal agents remains uncommon in C. neoformans and has not significantly changed with time during the past decade.


1997 ◽  
Vol 41 (2) ◽  
pp. 233-235 ◽  
Author(s):  
M A Pfaller ◽  
S Messer ◽  
R N Jones

Sch 56592 is a new triazole agent with potent, broad-spectrum antifungal activity. The in vitro activities of Sch 56592, itraconazole, fluconazole, amphotericin B, and flucytosine (5-FC) against 404 clinical isolates of Candida spp. (382 isolates) and Saccharomyces cerevisiae (22 isolates) were investigated. In vitro susceptibility testing was performed by a broth microdilution method performed according to National Committee for Clinical Laboratory Standards guidelines. Overall, Sch 56592 was very active (MIC at which 90% of isolates are inhibited [MIC90], 0.5 microgram/ml) against these yeast isolates. Sch 56592 was most active against Candida tropicalis, Candida parapsilosis, candida lusitaniae, and Candida stellatoidea (MIC90, < or = 0.12 microgram/ml) and was least active against Candida glabrata (MIC90, 2.0 micrograms/ml). Sch 56592 was 2- to 32-fold more active than amphotericin B and 5-FC against all species except C. glabrata. By comparison with the other triazoles, Sch 56592 was equivalent to itraconazole and greater than or equal to eightfold more active than fluconazole. On the basis of these results, Sch 56592 has promising antifungal activity, and further in vitro and in vivo investigations are warranted.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S793-S793
Author(s):  
Lynn-Yao Lin ◽  
Dmitri Debabov ◽  
William Chang

Abstract Background OXA-48 is a carbapenemase with low-level hydrolytic activity toward cephalosporins. This study evaluated in vitro activities of ceftazidime-avibactam (CAZ-AVI), meropenem (MEM), meropenem-vaborbactam (MVB), ceftolozane-tazobactam (C/T), and other antimicrobial agents against 113 OXA-48-producing Enterobacterales with multiple resistance mechanisms collected in a 2017–2018 global surveillance program. Methods Nonduplicate clinical isolates of 113 Enterobacterales were collected from medical centers in 25 countries in 2017–2018. In vitro susceptibility tests were performed by broth microdilution with a custom-made panel consisting of CAZ-AVI, ceftazidime (CAZ), MEM, MVB, C/T, colistin (COL), gentamicin (GEN), levofloxacin (LEV), and amikacin (AMK). Whole genome sequencing or quantitative PCR data were used to analyze resistance mechanisms, such as OXA-48, extended-spectrum β-lactamase (ESBL), original-spectrum β-lactamase (OSBL), and AmpC β-lactamase. Clinical and Laboratory Standards Institute breakpoints were applied for susceptibility interpretations. Results Of 113 OXA-48–producing clinical isolates, 20 carried OXA-48 alone. The remaining 93 isolates carried additional β-lactamases, including 63 with ESBL (CTX-M-15) + OSBL (SHV, TEM), 15 with AmpC (DHA, AAC, CMY) + ESBL (CTX-M-15), and 15 with OSBL (SHV, TEM). 99.1% (all but 1) of all isolates tested were susceptible to CAZ-AVI, whereas 71.7%, 17.7%, and 14.2% were susceptible to MVB, MEM, and C/T, respectively. Among isolates harboring multiple resistance mechanisms (OXA-48 + ESBL + OSBL; n=63), 98.4%, 69.8%, 11.1%, and 7.9% were susceptible to CAZ-AVI, MVB, MEM, and C/T, respectively. Among isolates carrying OXA-48 + AmpC + ESBL + OSBL (n=15), 100%, 66.7%, 13.3%, and 13.3% were susceptible to CAZ-AVI, MVB, MEM, and C/T, respectively (Table). Aminoglycosides (AMK and GEN) and other β-lactams (eg, CAZ) were 20%–90% active against these isolates. COL was the second most effective comparator, inhibiting 83.2% of these isolates. Table Conclusion CAZ-AVI was the most effective agent in this study compared with other antibiotics, including β-lactams, β-lactam–β-lactamase inhibitor combinations, aminoglycosides, and COL, against OXA-48-producing Enterobacterales carrying multiple β-lactamases. Disclosures Lynn-Yao Lin, MS, AbbVie (Employee) Dmitri Debabov, PhD, AbbVie (Employee) William Chang, BS, AbbVie (Employee)


1999 ◽  
Vol 123 (4) ◽  
pp. 285-289 ◽  
Author(s):  
Gary V. Doern ◽  
Angela B. Brueggemann ◽  
Michael A. Pfaller ◽  
Ronald N. Jones

Abstract Objective.—To assess the performance of clinical microbiology laboratories in the United States when conducting in vitro susceptibility tests with Streptococcus pneumoniae. Methods.—The results of a nationwide College of American Pathologists Proficiency Survey test sample, in which susceptibility testing of an isolate of S pneumoniae was performed, were assessed with respect to precision and accuracy. Results.—Wide variability was noted among participating laboratories with both minimum inhibitory concentration procedures and disk diffusion susceptibility tests when both methods were applied to S pneumoniae. Despite this high degree of variation, categorical interpretive errors were uncommon. Numerous laboratories reported results for antimicrobial agents that are not recommended by the National Committee for Clinical Laboratory Standards for tests with S pneumoniae. Conclusions.—Current susceptibility testing practices with S pneumoniae in the United States indicate limited precision and a tendency for laboratories to test and report results obtained with antimicrobial agents of questionable therapeutic value against this organism. Continued efforts to standardize susceptibility testing of S pneumoniae in the United States are warranted. In addition, modifications of existing interpretive criteria may be necessary.


2000 ◽  
Vol 38 (8) ◽  
pp. 2949-2954 ◽  
Author(s):  
Joseph Meletiadis ◽  
Jacques F. G. M. Meis ◽  
Johan W. Mouton ◽  
J. Peter Donnelly ◽  
Paul E. Verweij

The susceptibility of 30 clinical isolates belonging to six different species of filamentous fungi (Aspergillus fumigatus, Aspergillus flavus, Scedosporium prolificans, Scedosporium apiospermum, Fusarium solani, and Fusarium oxysporum) was tested against six antifungal drugs (miconazole, voriconazole, itraconazole, UR9825, terbinafine, and amphotericin B) with the microdilution method recommended by the National Committee for Clinical Laboratory Standards (NCCLS) (M38-P). The MICs were compared with the MICs obtained by a colorimetric method measuring the reduction of the dye 3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) to formazan by viable fungi. The levels of agreement between the two methods were 96 and 92% for MIC-0 (clear wells) and MIC-1 (75% growth reduction), respectively. The levels of agreement were always higher for Aspergillus spp. (97% ± 2.5%), followed byScedosporium spp. (87% ± 10.3%) and Fusariumspp. (78% ± 7.8%). The NCCLS method was more reproducible than the MTT method: 98 versus 95% for MIC-0 and 97 versus 90% for MIC-1. However, the percentage of hyphal growth as determined visually by the NCCLS method showed several discrepancies when they were compared with the percentages of MTT reduction. A new simplified assay that incorporates the dye MTT with the initial inoculum and in which the fungi are incubated with the dye for 48 h or more was developed, showing comparable levels of agreement and reproducibility with the other two methods. Furthermore, the new assay was easier to perform and more sensitive than the MTT method.


1999 ◽  
Vol 37 (7) ◽  
pp. 2343-2345 ◽  
Author(s):  
Deanna A. Sutton ◽  
Stephen E. Sanche ◽  
Sanjay G. Revankar ◽  
Annette W. Fothergill ◽  
Michael G. Rinaldi

Amphotericin B therapy continues to be the “gold standard” in the treatment of invasive aspergillosis in the immunocompromised host. Although Aspergillus fumigatus and Aspergillus flavus constitute the major species, several reports have described invasive pulmonary or disseminated disease due to the less common Aspergillus terreus and dismal clinical outcomes with high-dose amphotericin B. We therefore evaluated 101 clinical isolates of A. terreus for their susceptibility to amphotericin B and the investigational triazole voriconazole by using the National Committee for Clinical Laboratory Standards M27-A method modified for mould testing. Forty-eight-hour MICs indicated 98 and 0% resistance to amphotericin B and voriconazole, respectively. We conclude that A. terreus should be added to the list of etiologic agents refractory to conventional amphotericin B therapy and suggest the potential clinical utility of voriconazole in aspergillosis due to this species.


2002 ◽  
Vol 46 (5) ◽  
pp. 1583-1585 ◽  
Author(s):  
Gloria M. González ◽  
Rolando Tijerina ◽  
Deanna A. Sutton ◽  
John R. Graybill ◽  
Michael G. Rinaldi

ABSTRACT We investigated the susceptibilities of hyphal, mixed hyphal, ungerminated arthroconidial, and germinated arthroconidial populations of Coccidioides immitis to lipid formulations of amphotericin B and nystatin and their conventional preparations, utilizing the National Committee for Clinical Laboratory Standards M38-P broth macrodilution method. The differences in effects of the three different growth stages of the saprobic phase of C. immitis on the MIC/minimum lethal concentration (MLC) ratio were not statistically significant for any of the antifungal agents tested. These results suggest that either inocula could be used for in vitro susceptibility studies with C. immitis.


2006 ◽  
Vol 50 (4) ◽  
pp. 1287-1292 ◽  
Author(s):  
Benjamin J. Park ◽  
Beth A. Arthington-Skaggs ◽  
Rana A. Hajjeh ◽  
Naureen Iqbal ◽  
Meral A. Ciblak ◽  
...  

ABSTRACT One hundred seven Candida bloodstream isolates (51 C. albicans, 24 C. glabrata, 13 C. parapsilosis, 13 C. tropicalis, 2 C. dubliniensis, 2 C. krusei, and 2 C. lusitaniae strains) from patients treated with amphotericin B alone underwent in vitro susceptibility testing against amphotericin B using five different methods. Fifty-four isolates were from patients who failed treatment, defined as death 7 to 14 days after the incident candidemia episode, having persistent fever of ≥5 days' duration after the date of the incident candidemia, or the recurrence of fever after two consecutive afebrile days while on antifungal treatment. MICs were determined by using the Clinical Laboratory Standards Institute (formally National Committee for Clinical Laboratory Standards) broth microdilution procedure with two media and by using Etest. Minimum fungicidal concentrations (MFCs) were also measured in two media. Broth microdilution tests with RPMI 1640 medium generated a restricted range of MICs (0.125 to 1 μg/ml); the corresponding MFC values ranged from 0.5 to 4 μg/ml. Broth microdilution tests with antibiotic medium 3 produced a broader distribution of MIC and MFC results (0.015 to 0.25 μg/ml and 0.06 to 2 μg/ml, respectively). Etest produced the widest distribution of MICs (0.094 to 2 μg/ml). However, none of the test formats studied generated results that significantly correlated with therapeutic success or failure.


1999 ◽  
Vol 37 (3) ◽  
pp. 870-872 ◽  
Author(s):  
M. A. Pfaller ◽  
S. A. Messer ◽  
S. Gee ◽  
S. Joly ◽  
C. Pujol ◽  
...  

Candida dubliniensis is a newly recognized fungal pathogen causing mucosal disease in AIDS patients. Although preliminary studies indicate that most strains of C. dubliniensis are susceptible to established antifungal agents, fluconazole-resistant strains have been detected. Furthermore, fluconazole-resistant strains are easily derived in vitro, and these strains exhibit increased expression of multidrug resistance transporters, especially MDR1. Because of the potential for the development of resistant strains of C. dubliniensis, it is prudent to explore the in vitro activities of several of the newer triazole and echinocandin antifungals against isolates of C. dubliniensis. In this study we tested 71 isolates of C. dubliniensis against the triazoles BMS-207147, Sch 56592, and voriconazole and a representative of the echinocandin class of antifungal agents, MK-0991. We compared the activities of these agents with those of the established antifungal agents fluconazole, itraconazole, amphotericin B, and 5-fluorocytosine (5FC) by using National Committee for Clinical Laboratory Standards microdilution reference methods. Our findings indicate that the vast majority of clinical isolates of C. dubliniensis are highly susceptible to both new and established antifungal agents. Strains with decreased susceptibilities to fluconazole remained susceptible to the investigational agents as well as to amphotericin B and 5FC. The increased potencies of the new triazole and echinocandin antifungal agents may provide effective therapeutic options for the treatment of infections due to C. dubliniensis.


1996 ◽  
Vol 40 (3) ◽  
pp. 822-824 ◽  
Author(s):  
S P Franzot ◽  
J S Hamdan

A total of 53 Cryptococcus neoformans strains, including clinical and environmental Brazilian isolates, were tested for their susceptibilities to amphotericin B, 5-flucytosine, ketoconazole, fluconazole, and itraconazole. The tests were performed according to the National Committee of Clinical Laboratory Standards recommendations (document M27-P). In general, there was a remarkable homogeneity of results for all strains, and comparable MICs were found for environmental and clinical isolates. This paper represents the first contribution in which susceptibility data for Brazilian C. neoformans isolates are provided.


Sign in / Sign up

Export Citation Format

Share Document