scholarly journals In Vitro and In Vivo Activities of Anti-Influenza Virus Compound T-705

2002 ◽  
Vol 46 (4) ◽  
pp. 977-981 ◽  
Author(s):  
Y. Furuta ◽  
K. Takahashi ◽  
Y. Fukuda ◽  
M. Kuno ◽  
T. Kamiyama ◽  
...  

ABSTRACT T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) has been found to have potent and selective inhibitory activity against influenza virus. In an in vitro plaque reduction assay, T-705 showed potent inhibitory activity against influenza A, B, and C viruses, with 50% inhibitory concentrations (IC50s) of 0.013 to 0.48 μg/ml, while it showed no cytotoxicity at concentrations up to 1,000 μg/ml in Madin-Darby canine kidney cells. The selectivity index for influenza virus was more than 2,000. It was also active against a neuraminidase inhibitor-resistant virus and some amantadine-resistant viruses. T-705 showed weak activity against non-influenza virus RNA viruses, with the IC50s being higher for non-influenza virus RNA viruses than for influenza virus, and it had no activity against DNA viruses. Orally administered T-705 at 100 mg/kg of body weight/day (four times a day) for 5 days significantly reduced the mean pulmonary virus yields and the rate of mortality in mice infected with influenza virus A/PR/8/34 (3 × 102 PFU). These results suggest that T-705 may be a compound that is useful and highly selective against influenza virus infections and that has a mode of action different from those of commercially available drugs, such as amantadine, rimantadine, and neuraminidase inhibitors.

1998 ◽  
Vol 42 (3) ◽  
pp. 647-653 ◽  
Author(s):  
Weixing Li ◽  
Paul A. Escarpe ◽  
Eugene J. Eisenberg ◽  
Kenneth C. Cundy ◽  
Clive Sweet ◽  
...  

ABSTRACT GS 4071 is a potent carbocyclic transition-state analog inhibitor of influenza virus neuraminidase with activity against both influenza A and B viruses in vitro. GS 4116, the guanidino analog of GS 4071, is a 10-fold more potent inhibitor of influenza virus replication in tissue culture than GS 4071. In this study we determined the oral bioavailabilities of GS 4071, GS 4116, and their respective ethyl ester prodrugs in rats. Both parent compounds and the prodrug of the guanidino analog exhibited poor oral bioavailability (2 to 4%) and low peak concentrations in plasma (C maxs; C max<0.06 μg/ml). In contrast, GS 4104, the ethyl ester prodrug of GS 4071, exhibited good oral bioavailability (35%) as GS 4071 and high C maxs of GS 4071 (Cmax = 0.47 μg/ml) which are 150 times the concentration necessary to inhibit influenza virus neuraminidase activity by 90%. The bioavailability of GS 4104 as GS 4071 was also determined in mice (30%), ferrets (11%), and dogs (73%). The plasma of all four species exhibited high, sustained concentrations of GS 4071 such that at 12 h postdosing the concentrations of GS 4071 in plasma exceeded those necessary to inhibit influenza virus neuraminidase activity by 90%. These results demonstrate that GS 4104 is an orally bioavailable prodrug of GS 4071 in animals and that it has the potential to be an oral agent for the prevention and treatment of influenza A and B virus infections in humans.


2018 ◽  
Vol 115 (45) ◽  
pp. 11613-11618 ◽  
Author(s):  
Daniel H. Goldhill ◽  
Aartjan J. W. te Velthuis ◽  
Robert A. Fletcher ◽  
Pinky Langat ◽  
Maria Zambon ◽  
...  

Favipiravir is a broad-spectrum antiviral that has shown promise in treatment of influenza virus infections. While emergence of resistance has been observed for many antiinfluenza drugs, to date, clinical trials and laboratory studies of favipiravir have not yielded resistant viruses. Here we show evolution of resistance to favipiravir in the pandemic H1N1 influenza A virus in a laboratory setting. We found that two mutations were required for robust resistance to favipiravir. We demonstrate that a K229R mutation in motif F of the PB1 subunit of the influenza virus RNA-dependent RNA polymerase (RdRP) confers resistance to favipiravir in vitro and in cell culture. This mutation has a cost to viral fitness, but fitness can be restored by a P653L mutation in the PA subunit of the polymerase. K229R also conferred favipiravir resistance to RNA polymerases of other influenza A virus strains, and its location within a highly conserved structural feature of the RdRP suggests that other RNA viruses might also acquire resistance through mutations in motif F. The mutations identified here could be used to screen influenza virus-infected patients treated with favipiravir for the emergence of resistance.


2004 ◽  
Vol 48 (12) ◽  
pp. 4542-4549 ◽  
Author(s):  
Simon J. F. Macdonald ◽  
Keith G. Watson ◽  
Rachel Cameron ◽  
David K. Chalmers ◽  
Derek A. Demaine ◽  
...  

ABSTRACT Dimeric derivatives (compounds 7 to 9) of the influenza virus neuraminidase inhibitor zanamivir (compound 2), which have linking groups of 14 to 18 atoms in length, are approximately 100-fold more potent inhibitors of influenza virus replication in vitro and in vivo than zanamivir. The observed optimum linker length of 18 to 22 Å, together with observations that the dimers cause aggregation of isolated neuraminidase tetramers and whole virus, indicate that the dimers benefit from multivalent binding via intertetramer and intervirion linkages. The outstanding long-lasting protective activities shown by compounds 8 and 9 in mouse influenza infectivity experiments and the extremely long residence times observed in the lungs of rats suggest that a single low dose of a dimer would provide effective treatment and prophylaxis for influenza virus infections.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 557 ◽  
Author(s):  
Li Zhang ◽  
Jungang Chen ◽  
Chang Ke ◽  
Haiwei Zhang ◽  
Shoujun Zhang ◽  
...  

Influenza virus infections can lead to viral pneumonia and acute respiratory distress syndrome in severe cases, causing significant morbidity and mortality and posing a great threat to human health. Because of the diversity of influenza virus strains and drug resistance to the current direct antiviral agents, there have been no effective drugs as yet to cure all patients infected by influenza viruses. Natural products from plants contain compounds with diverse structures that have the potential to interact with multiple host and virus factors. In this study, we identified the ethanol extract of Caesalpinia decapetala (Roth) Alston (EEC) as an inhibitor against the replication of a panel of influenza A and B viruses both on human pulmonary epithelial A549 and human monocytic U937 cells. The animal study revealed that EEC administration reduces the weight loss and improves the survival rate of mice infected with lethal influenza virus. Also, EEC treatment attenuated lung injury and reduced virus titer significantly. In conclusion, we showed that EEC has antiviral activity both in vitro and in vivo, suggesting that the plant C. decapetala has the potential to be further developed as a resource of new anti-influenza drugs.


2015 ◽  
Vol 60 (3) ◽  
pp. 1902-1906 ◽  
Author(s):  
Dongming Zhao ◽  
Satoshi Fukuyama ◽  
Yuko Sakai-Tagawa ◽  
Emi Takashita ◽  
Jason E. Shoemaker ◽  
...  

New strategies to develop novel broad-spectrum antiviral drugs against influenza virus infections are needed due to the emergence of antigenic variants and drug-resistant viruses. Here, we evaluated C646, a novel p300/CREB-binding protein-specific inhibitor of histone acetyltransferase (HAT), as an anti-influenza virus agentin vitroandin vivoand explored how C646 affects the viral life cycle and host response. Our studies highlight the value of targeting HAT activity for anti-influenza drug development.


2001 ◽  
Vol 45 (3) ◽  
pp. 749-757 ◽  
Author(s):  
Robert W. Sidwell ◽  
Donald F. Smee ◽  
John H. Huffman ◽  
Dale L. Barnard ◽  
Kevin W. Bailey ◽  
...  

ABSTRACT The cyclopentane influenza virus neuraminidase inhibitor RWJ-270201 was evaluated against influenza A/NWS/33 (H1N1), A/Shangdong/09/93 (H3N2), A/Victoria/3/75 (H3N2), and B/Hong Kong/05/72 virus infections in mice. Treatment was by oral gavage twice daily for 5 days beginning 4 h pre-virus exposure. The influenza virus inhibitor oseltamivir was run in parallel, and ribavirin was included in studies with the A/Shangdong and B/Hong Kong viruses. RWJ-270201 was inhibitory to all infections using doses as low as 1 mg/kg/day. Oseltamivir was generally up to 10-fold less effective than RWJ-270201. Ribavirin was also inhibitory but was less tolerated by the mice at the 75-mg/kg/day dose used. Disease-inhibitory effects included prevention of death, lessening of decline of arterial oxygen saturation, inhibition of lung consolidation, and reduction in lung virus titers. RWJ-270201 and oseltamivir, at doses of 10 and 1 mg/kg/day each, were compared with regard to their effects on daily lung parameters in influenza A/Shangdong/09/93 virus-infected mice. Maximum virus titer inhibition was seen on day 1, with RWJ-270201 exhibiting the greater inhibitory effect, a titer reduction of >104 cell culture 50% infective doses (CCID50)/g. By day 8, the lung virus titers in mice treated with RWJ-270201 had declined to 101.2 CCID50/g, whereas titers from oseltamivir-treated animals were >103CCID50/g. Mean lung consolidation was also higher in the oseltamivir-treated animals on day 8. Both neuraminidase inhibitors were well tolerated by the mice. RWJ-270201 was nontoxic at doses as high as 1,000 mg/kg/day. These data indicate potential for the oral use of RWJ-270201 in the treatment of influenza virus infections in humans.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Christopher S. Anderson ◽  
Sandra Ortega ◽  
Francisco A. Chaves ◽  
Amelia M. Clark ◽  
Hongmei Yang ◽  
...  

Abstract The induction of antibodies specific for the influenza HA protein stalk domain is being pursued as a universal strategy against influenza virus infections. However, little work has been done looking at natural or induced antigenic variability in this domain and the effects on viral fitness. We analyzed human H1 HA head and stalk domain sequences and found substantial variability in both, although variability was highest in the head region. Furthermore, using human immune sera from pandemic A/California/04/2009 immune subjects and mAbs specific for the stalk domain, viruses were selected in vitro containing mutations in both domains that partially contributed to immune evasion. Recombinant viruses encoding amino acid changes in the HA stalk domain replicated well in vitro, and viruses incorporating two of the stalk mutations retained pathogenicity in vivo. These findings demonstrate that the HA protein stalk domain can undergo limited drift under immune pressure and the viruses can retain fitness and virulence in vivo, findings which are important to consider in the context of vaccination targeting this domain.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Laura V. Ashton ◽  
Robert L. Callan ◽  
Sangeeta Rao ◽  
Gabriele A. Landolt

Infection of dogs with canine influenza virus (CIV) is considered widespread throughout the United States following the first isolation of CIV in 2004. While vaccination against influenza A infection is a common and important practice for disease control, antiviral therapy can serve as a valuable adjunct in controlling the impact of the disease. In this study, we examined the antiviral activity of nitazoxanide (NTZ) and tizoxanide (TIZ) against three CIV isolatesin vitro. NTZ and TIZ inhibited virus replication of all CIVs with 50% and 90% inhibitory concentrations ranging from 0.17 to 0.21 μMand from 0.60 to 0.76 μM, respectively. These results suggest that NTZ and TIZ are effective against CIV and may be useful for treatment of canine influenza in dogs but further investigation of thein vivoefficacy against CIV as well as the drug's potential for toxicity in dogs is needed.


2020 ◽  
Author(s):  
Mengwei Li ◽  
Yuxu Wang ◽  
Jing Jin ◽  
Jie Dou ◽  
Qinglong Guo ◽  
...  

2008 ◽  
Vol 82 (14) ◽  
pp. 6902-6910 ◽  
Author(s):  
Frank T. Vreede ◽  
Hugh Gifford ◽  
George G. Brownlee

ABSTRACT The mechanisms regulating the synthesis of mRNA, cRNA, and viral genomic RNA (vRNA) by the influenza A virus RNA-dependent RNA polymerase are not fully understood. Previous studies in our laboratory have shown that virion-derived viral ribonucleoprotein complexes synthesize both mRNA and cRNA in vitro and early in the infection cycle in vivo. Our continued studies showed that de novo synthesis of cRNA in vitro is more sensitive to the concentrations of ATP, CTP, and GTP than capped-primer-dependent synthesis of mRNA. Using rescued recombinant influenza A/WSN/33 viruses, we now demonstrate that the 3′-terminal sequence of the vRNA promoter dictates the requirement for a high nucleoside triphosphate (NTP) concentration during de novo-initiated replication to cRNA, whereas this is not the case for the extension of capped primers during transcription to mRNA. In contrast to some other viral polymerases, for which only the initiating NTP is required at high concentrations, influenza virus polymerase requires high concentrations of the first three NTPs. In addition, we show that base pair mutations in the vRNA promoter can lead to nontemplated dead-end mutations during replication to cRNA in vivo. Based on our observations, we propose a new model for the de novo initiation of influenza virus replication.


Sign in / Sign up

Export Citation Format

Share Document