influenza virus replication
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 40)

H-INDEX

43
(FIVE YEARS 6)

2021 ◽  
Vol 21 (3) ◽  
pp. 81-84
Author(s):  
Mohammad Al Farroukh ◽  
Ekaterina A. Skomorokhova ◽  
Daria N. Magazenkova ◽  
Irina V. Kiseleva

BACKGROUND: The present study assesses copper metabolism of the host organism as a target of antiviral strategy, basing on the virocell concept. This concept suggests that the targets for suppressing viral reproduction can be found in the hosts metabolism. AIM: Evaluation of the effect of copper status indicators on influenza infection in mice. MATERIALS AND METHODS: Silver nanoparticles (AgNPs) were used as a specific active agent because they reduce the level of holo-ceruloplasmin, the main extracellular cuproenzyme. The mouse model of influenza virus A infection was used with two doses: 1 LD50 and 10 LD50. The following treatment regimens were used: mice were pretreated four days before infection and then every day during infection development until the end of the experiment (day 14). RESULTS: The mice treated with AgNPs demonstrated significantly lower mortality, the protection index reached 6070% at the end of the experiment, and mean lifespan was prolonged. In addition, the treatment of the animals with AgNPs resulted in normalization of the weight dynamics. Despite the amelioration of the infection, AgNPs treatment did not influence influenza virus replication. CONCLUSIONS: This study provides support for the view that silver nanoparticles could be used as protection against influenza.


2021 ◽  
Vol 102 (11) ◽  
Author(s):  
Nichole Orr-Burks ◽  
Jackelyn Murray ◽  
Kyle V. Todd ◽  
Abhijeet Bakre ◽  
Ralph A. Tripp

Influenza virus causes seasonal epidemics and sporadic pandemics resulting in morbidity, mortality, and economic losses worldwide. Understanding how to regulate influenza virus replication is important for developing vaccine and therapeutic strategies. Identifying microRNAs (miRs) that affect host genes used by influenza virus for replication can support an antiviral strategy. In this study, G-protein coupled receptor (GPCR) and ion channel (IC) host genes in human alveolar epithelial (A549) cells used by influenza virus for replication (Orr-Burks et al., 2021) were examined as miR target genes following A/CA/04/09- or B/Yamagata/16/1988 replication. Thirty-three miRs were predicted to target GPCR or IC genes and their miR mimics were evaluated for their ability to decrease influenza virus replication. Paired miR inhibitors were used as an ancillary measure to confirm or not the antiviral effects of a miR mimic. Fifteen miRs lowered influenza virus replication and four miRs were found to reduce replication irrespective of virus strain and type differences. These findings provide evidence for novel miR disease intervention strategies for influenza viruses.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0259129
Author(s):  
Nichole Orr-Burks ◽  
Jackelyn Murray ◽  
Kyle V. Todd ◽  
Abhijeet Bakre ◽  
Ralph A. Tripp

Influenza viruses cause respiratory tract infections and substantial health concerns. Infection may result in mild to severe respiratory disease associated with morbidity and some mortality. Several anti-influenza drugs are available, but these agents target viral components and are susceptible to drug resistance. There is a need for new antiviral drug strategies that include repurposing of clinically approved drugs. Drugs that target cellular machinery necessary for influenza virus replication can provide a means for inhibiting influenza virus replication. We used RNA interference screening to identify key host cell genes required for influenza replication, and then FDA-approved drugs that could be repurposed for targeting host genes. We examined the effects of Clopidogrel and Triamterene to inhibit A/WSN/33 (EC50 5.84 uM and 31.48 uM, respectively), A/CA/04/09 (EC50 6.432 uM and 3.32 uM, respectively), and B/Yamagata/16/1988 (EC50 0.28 uM and 0.11 uM, respectively) replication. Clopidogrel and Triamterene provide a druggable approach to influenza treatment across multiple strains and subtypes.


2021 ◽  
Author(s):  
Hayato Morimoto ◽  
Tadashi Hatanaka ◽  
Mari Narusaka ◽  
Yoshihiro Narusaka

Abstract Proanthocyanidins (PACs) have various bioactivities, such as being anti-bacterial, anti-cancer, and anti-oxidant. Consequently, they have been vigorously studied for the development of new natural bioactive compounds. Recently, AzPAC was isolated from the medicinal plant Alpinia zerumbet, and it was found to inhibit the infection of animal viruses, influenza A viruses (IAVs), and porcine epidemic diarrhea virus. The virucidal activity of AzPAC means that it can interact directly with viral particles. However, few studies have investigated the preventive mechanism utilized by AzPAC on influenza virus replication. In this study, the composition of AzPAC and the affinity between AzPAC and IAVs was investigated in detail. We found that AzPAC was composed of an epicatechin monomer, which was linked by inter-flavan bonds between the C4 and C8 positions (B2-type) and the C4 and C6 positions (B5-type) in the terminal units of the PAC. A quenching assay indicated that AzPAC interacted with IAV membrane proteins, hemagglutinin and neuraminidase. Additionally, circular dichroism analysis indicated that AzPAC affected the change in the secondary structure rate of the viral membrane proteins. AzPAC was able to impair the infective process of IAVs via direct interaction with their viral membrane proteins. These results indicate that A. zerumbet is an invaluable bioresource for the development of preventive drugs against IAV infection.


2021 ◽  
Author(s):  
Prerna Arora ◽  
Najat Bdeir ◽  
Sabine Gärtner ◽  
Stefanie Reiter ◽  
Lars Pelz ◽  
...  

Defective interfering (DI) RNAs arise during influenza virus replication, can be packaged into particles (DIPs) and suppress spread of wildtype (WT) virus. However, the molecular signatures of DI RNAs and the mechanism underlying antiviral activity are incompletely understood. Here, we show that any central deletion is sufficient to convert a viral RNA into a DI RNA and that antiviral activity of DIPs is inversely correlated with DI RNA length when induction of the interferon (IFN) system is disfavored. When induction of the IFN system was allowed, it was found to be the major contributor to DIP antiviral activity. Finally, while both DIPs and influenza virus triggered expression of IFN-stimulated genes (ISG) only virus stimulated robust expression of IFN. These results suggest a key role of innate immune activation in DIP antiviral activity and point towards previously unappreciated differences in DIP- and influenza virus-mediated activation of the effector functions of the IFN system.


2021 ◽  
Vol 102 (9) ◽  
Author(s):  
Ecco Staller ◽  
Carol M. Sheppard ◽  
Laury Baillon ◽  
Rebecca Frise ◽  
Thomas P. Peacock ◽  
...  

Viruses require host factors to support their replication, and genetic variation in such factors can affect susceptibility to infectious disease. Influenza virus replication in human cells relies on ANP32 proteins, which are involved in assembly of replication-competent dimeric influenza virus polymerase (FluPol) complexes. Here, we investigate naturally occurring single nucleotide variants (SNV) in the human Anp32A and Anp32B genes. We note that variant rs182096718 in Anp32B is found at a higher frequency than other variants in either gene. This SNV results in a D130A substitution in ANP32B, which is less able to support FluPol activity than wild-type ANP32B and binds FluPol with lower affinity. Interestingly, ANP32B-D130A exerts a dominant negative effect over wild-type ANP32B and interferes with the functionally redundant paralogue ANP32A. FluPol activity and virus replication are attenuated in CRISPR-edited cells expressing wild-type ANP32A and mutant ANP32B-D130A. We propose a model in which the D130A mutation impairs FluPol dimer formation, thus resulting in compromised replication. We suggest that both homozygous and heterozygous carriers of rs182096718 may have some genetic protection against influenza viruses.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yvonne Boergeling ◽  
Linda Brunotte ◽  
Stephan Ludwig

Abstract Influenza viruses are small RNA viruses with a genome of about 13 kb. Because of this limited coding capacity, viral proteins have evolved to fulfil multiple functions in the infected cell. This implies that there must be mechanisms allowing to dynamically direct protein action to a distinct activity in a spatio-temporal manner. Furthermore, viruses exploit many cellular processes, which also have to be dynamically regulated during the viral replication cycle. Phosphorylation and dephosphorylation of proteins are fundamental for the control of many cellular responses. There is accumulating evidence that this mechanism represents a so far underestimated level of regulation in influenza virus replication. Here, we focus on the current knowledge of dynamics of phospho-modifications in influenza virus replication and show recent examples of findings underlining the crucial role of phosphorylation in viral transport processes as well as activation and counteraction of the innate immune response.


Cell Reports ◽  
2021 ◽  
Vol 35 (10) ◽  
pp. 109213
Author(s):  
Siwen Liu ◽  
Bobo Wing-Yee Mok ◽  
Shaofeng Deng ◽  
Honglian Liu ◽  
Pui Wang ◽  
...  

2021 ◽  
Author(s):  
Hai-Yan Yan ◽  
Hui-Qiang Wang ◽  
Ming Zhong ◽  
Shuo Wu ◽  
Lu Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document