scholarly journals Toward the Development of a Virus-Cell-Based Assay for the Discovery of Novel Compounds against Human Immunodeficiency Virus Type 1

2003 ◽  
Vol 47 (2) ◽  
pp. 501-508 ◽  
Author(s):  
Martin E. Adelson ◽  
Annmarie L. Pacchia ◽  
Malvika Kaul ◽  
Robert F. Rando ◽  
Yacov Ron ◽  
...  

ABSTRACT The emergence of human immunodeficiency virus type 1 (HIV-1) strains resistant to highly active antiretroviral therapy necessitates continued drug discovery for the treatment of HIV-1 infection. Most current drug discovery strategies focus upon a single aspect of HIV-1 replication. A virus-cell-based assay, which can be adapted to high-throughput screening, would allow the screening of multiple targets simultaneously. HIV-1-based vector systems mimic the HIV-1 life cycle without yielding replication-competent virus, making them potentially important tools for the development of safe, wide-ranging, rapid, and cost-effective assays amenable to high-throughput screening. Since replication of vector virus is typically restricted to a single cycle, a crucial question is whether such an assay provides the needed sensitivity to detect potential HIV-1 inhibitors. With a stable, inducible vector virus-producing cell line, the inhibitory effects of four reverse transcriptase inhibitors (zidovudine, stavudine, lamivudine, and didanosine) and one protease inhibitor (indinavir) were assessed. It was found that HIV-1 vector virus titer was inhibited in a single cycle of replication up to 300-fold without affecting cell viability, indicating that the assay provides the necessary sensitivity for identifying antiviral molecules. Thus, it seems likely that HIV-1-derived vector systems can be utilized in a novel fashion to facilitate the development of a safe, efficient method for screening compound libraries for anti-HIV-1 activity.

2005 ◽  
Vol 49 (12) ◽  
pp. 5185-5188 ◽  
Author(s):  
Sofiya Micheva-Viteva ◽  
Annmarie L. Pacchia ◽  
Yacov Ron ◽  
Stuart W. Peltz ◽  
Joseph P. Dougherty

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) is not eliminated from patients even after years of antiretroviral therapy, apparently due to the presence of latently infected cells. Here we describe the development of a cell-based system of latency that can be used for high-throughput screening aimed at novel drug discovery to eradicate HIV-1 infection.


2004 ◽  
Vol 78 (19) ◽  
pp. 10574-10581 ◽  
Author(s):  
Feng Feng ◽  
Adam Davis ◽  
Julie-Anne Lake ◽  
Jill Carr ◽  
Wei Xia ◽  
...  

ABSTRACT Virion infectivity factor (Vif) protein of human immunodeficiency virus type 1 (HIV-1) is essential for the productive infection of primary human CD4 T lymphocytes and macrophages. Vif overcomes the HIV-inhibitory effects of cellular factor APOBEC3G, which has cytidine deaminase activity. We previously reported the isolation of a Vif-interacting ring finger protein, Triad 3, from a human leukocyte cDNA library, using the yeast two-hybrid system. The full-length cellular protein homologue of Triad 3 has been recently identified as the zinc finger protein inhibiting NF-κB (ZIN). Sequence analysis indicates that Triad 3 protein contains all four major ring-like motifs of ZIN. We report here that ZIN binds to purified Vif in vitro and that Triad 3/ZIN interacts with HIV-1 Vif in transfected human 293T cells, as demonstrated by coimmunoprecipitation. To test the biological relevance of this interaction, we produced infectious HIV-1 NL4.3 in the presence or absence of cotransfected ZIN. HIV-1 NL4.3 virus stocks produced in the presence of exogenously expressed ZIN were twofold less infectious in a single-cycle infectivity assay than virus produced in the absence of exogenous ZIN. It was further shown that cells infected with HIV NL4.3 virus stocks produced in the presence of exogenously expressed ZIN were impaired in viral DNA synthesis by twofold. The impairment in viral reverse transcription and the reduction in single-cycle viral infectivity were both shown to be dependent on the presence of Vif in the virus producer cells. The possible mechanisms by which ZIN interferes with the early events of HIV-1 replication are discussed.


2005 ◽  
Vol 49 (9) ◽  
pp. 3833-3841 ◽  
Author(s):  
Joan Cao ◽  
Jason Isaacson ◽  
Amy K. Patick ◽  
Wade S. Blair

ABSTRACT Antiviral screens have proved useful for the identification of novel human immunodeficiency virus type 1 (HIV-1) inhibitors. In this study, we describe an HIV-1 full replication (HIV-1 Rep) assay that incorporates all of the targets required for replication in T-cell lines, including the HIV-1 Vif gene. The HIV-1 Rep assay was designed to exhibit optimal sensitivity to late-stage as well as early-stage inhibitors to maximize the likelihood of identification of novel target antiviral compounds in a screen. In addition, the flexibility of the HIV-1 Rep assay allows the rapid evaluation of antiviral compounds against different virus strains in different T-cell lines without significant modification of the assay format. We demonstrate that the HIV-1 Rep assay exhibits characteristics (e.g., a favorable Z′ value) compatible with high-throughput screening in a 384-well format. The utility of the HIV-1 Rep assay was demonstrated in a high-throughput screen of >106 compounds. To our knowledge, this study represents the first example of an HIV-1 antiviral screen that includes Vif as a functional target and was executed on an industrial scale.


2002 ◽  
Vol 76 (9) ◽  
pp. 4625-4633 ◽  
Author(s):  
Christopher A. Lundquist ◽  
Minoru Tobiume ◽  
Jing Zhou ◽  
Derya Unutmaz ◽  
Christopher Aiken

ABSTRACT The accessory protein Nef plays a crucial role in primate lentivirus pathogenesis. Nef enhances human immunodeficiency virus type 1 (HIV-1) infectivity in culture and stimulates viral replication in primary T cells. In this study, we investigated the relationship between HIV-1 replication efficiency in CD4+ T cells purified from human blood and two various known activities of Nef, CD4 downregulation and single-cycle infectivity enhancement. Using a battery of reporter viruses containing point mutations in nef, we observed a strong genetic correlation between CD4 downregulation by Nef during acute HIV-1 infection of activated T cells and HIV-1 replication efficiency in T cells. In contrast, HIV-1 replication ability was not significantly correlated with the ability of Nef to enhance single-cycle virion infectivity, as determined by using viruses produced in cells lacking CD4. These results demonstrate that CD4 downregulation by Nef plays a crucial role in HIV-1 replication in activated T cells and underscore the potential for the development of therapies targeting this conserved activity of Nef.


2004 ◽  
Vol 78 (6) ◽  
pp. 3170-3177 ◽  
Author(s):  
Zhujun Ao ◽  
Xiaojian Yao ◽  
Éric A. Cohen

ABSTRACT In this study, reverse transcriptase (RT)- and integrase (IN)-defective human immunodeficiency virus type 1 (HIV-1) was transcomplemented with Vpr-RT-IN fusion proteins to delineate pol sequences important for HIV-1 replication. Our results reveal that a 194-bp sequence encompassing the 3′end of the IN gene and containing the central DNA flap is necessary and sufficient for efficient HIV-1 single-cycle replication in dividing and nondividing cells. Furthermore, we show that the central DNA flap enhances HIV-1 single-round replication by five- to sevenfold, primarily by facilitating nuclear import of proviral DNA. In agreement with previous reports, our data support a functional role of the central DNA flap during the early stages of HIV-1 infection.


Sign in / Sign up

Export Citation Format

Share Document