scholarly journals Unraveling the Mode of Action of the Antimalarial Choline Analog G25 in Plasmodium falciparum and Saccharomyces cerevisiae

2004 ◽  
Vol 48 (8) ◽  
pp. 2816-2824 ◽  
Author(s):  
Rodolphe Roggero ◽  
Rachel Zufferey ◽  
Mihaela Minca ◽  
Eric Richier ◽  
Michele Calas ◽  
...  

ABSTRACT Pharmacological studies have indicated that the choline analog G25 is a potent inhibitor of Plasmodium falciparum growth in vitro and in vivo. Although choline transport has been suggested to be the target of G25, the exact mode of action of this compound is not known. Here we show that, similar to its effects on P. falciparum, G25 prevents choline entry into Saccharomyces cerevisiae cells and inhibits S. cerevisiae growth. However, we show that the uptake of this compound is not mediated by the choline carrier Hnm1. An hnm1Δ yeast mutant, which lacks the only choline transporter gene HNM1, was not altered in the transport of a labeled analog of this compound. Eleven yeast mutants lacking genes involved in different steps of phospholipid biosynthesis were analyzed for their sensitivity to G25. Four mutants affected in the de novo cytidyldiphosphate-choline-dependent phosphatidylcholine biosynthetic pathway and, surprisingly, a mutant strain lacking the phosphatidylserine decarboxylase-encoding gene PSD1 (but not PSD2) were found to be highly resistant to this compound. Based on these data for S. cerevisiae, labeling studies in P. falciparum were performed to examine the effect of G25 on the biosynthetic pathways of the major phospholipids phosphatidylcholine and phosphatidylethanolamine. Labeling studies in P. falciparum and in vitro studies with recombinant P. falciparum phosphatidylserine decarboxylase further supported the inhibition of both the de novo phosphatidylcholine metabolic pathway and the synthesis of phosphatidylethanolamine from phosphatidylserine. Together, our data indicate that G25 specifically targets the pathways for synthesis of the two major phospholipids, phosphatidylcholine and phosphatidylethanolamine, to exert its antimalarial activity.

2019 ◽  
Vol 19 (2) ◽  
pp. 308-325 ◽  
Author(s):  
Geoffrey W. Birrell ◽  
Matthew P. Challis ◽  
Amanda De Paoli ◽  
Dovile Anderson ◽  
Shane M. Devine ◽  
...  

The increasing incidence of antimalarial drug resistance to the first-line artemisinin combination therapies underpins an urgent need for new antimalarial drugs, ideally with a novel mode of action. The recently developed 2-aminomethylphenol, JPC-3210, (MMV 892646) is an erythrocytic schizonticide with potent in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum lines, low cytotoxicity, potent in vivo efficacy against murine malaria, and favorable preclinical pharmacokinetics including a lengthy plasma elimination half-life. To investigate the impact of JPC-3210 on biochemical pathways within P. falciparum-infected red blood cells, we have applied a “multi-omics” workflow based on high resolution orbitrap mass spectrometry combined with biochemical approaches. Metabolomics, peptidomics and hemoglobin fractionation analyses revealed a perturbation in hemoglobin metabolism following JPC-3210 exposure. The metabolomics data demonstrated a specific depletion of short hemoglobin-derived peptides, peptidomics analysis revealed a depletion of longer hemoglobin-derived peptides, and the hemoglobin fractionation assay demonstrated decreases in hemoglobin, heme and hemozoin levels. To further elucidate the mechanism responsible for inhibition of hemoglobin metabolism, we used in vitro β-hematin polymerization assays and showed JPC-3210 to be an intermediate inhibitor of β-hematin polymerization, about 10-fold less potent then the quinoline antimalarials, such as chloroquine and mefloquine. Further, quantitative proteomics analysis showed that JPC-3210 treatment results in a distinct proteomic signature compared with other known antimalarials. While JPC-3210 clustered closely with mefloquine in the metabolomics and proteomics analyses, a key differentiating signature for JPC-3210 was the significant enrichment of parasite proteins involved in regulation of translation. These studies revealed that the mode of action for JPC-3210 involves inhibition of the hemoglobin digestion pathway and elevation of regulators of protein translation. Importantly, JPC-3210 demonstrated rapid parasite killing kinetics compared with other quinolones, suggesting that JPC-3210 warrants further investigation as a potentially long acting partner drug for malaria treatment.


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1250-1255 ◽  
Author(s):  
S Whitehead ◽  
TE Peto

Abstract Deferoxamine (DF) has antimalarial activity that can be demonstrated in vitro and in vivo. This study is designed to examine the speed of onset and stage dependency of growth inhibition by DF and to determine whether its antimalarial activity is cytostatic or cytocidal. Growth inhibition was assessed by suppression of hypoxanthine incorporation and differences in morphologic appearance between treated and control parasites. Using synchronized in vitro cultures of Plasmodium falciparum, growth inhibition by DF was detected within a single parasite cycle. Ring and nonpigmented trophozoite stages were sensitive to the inhibitory effect of DF but cytostatic antimalarial activity was suggested by evidence of parasite recovery in later cycles. However, profound growth inhibition, with no evidence of subsequent recovery, occurred when pigmented trophozoites and early schizonts were exposed to DF. At this stage in parasite development, the activity of DF was cytocidal and furthermore, the critical period of exposure may be as short as 6 hours. These observations suggest that iron chelators may have a role in the treatment of clinical malaria.


2009 ◽  
Vol 105 (1) ◽  
pp. 275-279 ◽  
Author(s):  
Matheus Santos de Sá ◽  
José Fernando Oliveira Costa ◽  
Antoniana Ursine Krettli ◽  
Mariano Gustavo Zalis ◽  
Gabriela Lemos de Azevedo Maia ◽  
...  

1990 ◽  
Vol 10 (11) ◽  
pp. 5679-5687
Author(s):  
C K Barlowe ◽  
D R Appling

In eucaryotes, 10-formyltetrahydrofolate (formyl-THF) synthetase, 5,10-methenyl-THF cyclohydrolase, and NADP(+)-dependent 5,10-methylene-THF dehydrogenase activities are present on a single polypeptide termed C1-THF synthase. This trifunctional enzyme, encoded by the ADE3 gene in the yeast Saccharomyces cerevisiae, is thought to be responsible for the synthesis of the one-carbon donor 10-formyl-THF for de novo purine synthesis. Deletion of the ADE3 gene causes adenine auxotrophy, presumably as a result of the lack of cytoplasmic 10-formyl-THF. In this report, defined point mutations that affected one or more of the catalytic activities of yeast C1-THF synthase were generated in vitro and transferred to the chromosomal ADE3 locus by gene replacement. In contrast to ADE3 deletions, point mutations that inactivated all three activities of C1-THF synthase did not result in an adenine requirement. Heterologous expression of the Clostridium acidiurici gene encoding a monofunctional 10-formyl-THF synthetase in an ade3 deletion strain did not restore growth in the absence of adenine, even though the monofunctional synthetase was catalytically competent in vivo. These results indicate that adequate cytoplasmic 10-formyl-THF can be produced by an enzyme(s) other than C1-THF synthase, but efficient utilization of that 10-formyl-THF for purine synthesis requires a nonenzymatic function of C1-THF synthase. A monofunctional 5,10-methylene-THF dehydrogenase, dependent on NAD+ for catalysis, has been identified and purified from yeast cells (C. K. Barlowe and D. R. Appling, Biochemistry 29:7089-7094, 1990). We propose that the characteristics of strains expressing full-length but catalytically inactive C1-THF synthase could result from the formation of a purine-synthesizing multienzyme complex involving the structurally unchanged C1-THF synthase and that production of the necessary one-carbon units in these strains is accomplished by an NAD+ -dependent 5,10-methylene-THF dehydrogenase.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Letícia Tiburcio Ferreira ◽  
Juliana Rodrigues ◽  
Gustavo Capatti Cassiano ◽  
Tatyana Almeida Tavella ◽  
Kaira Cristina Peralis Tomaz ◽  
...  

ABSTRACT Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Among the seven drugs identified as promising antimalarial candidates, the anthracycline epirubicin was selected for further experimental validation. Epirubicin was shown to be potent in vitro against sensitive and multidrug-resistant P. falciparum strains and P. vivax field isolates in the nanomolar range, as well as being effective against an in vivo murine model of Plasmodium yoelii. Transmission-blocking activity was observed for epirubicin in vitro and in vivo. Finally, using yeast-based haploinsufficiency chemical genomic profiling, we aimed to get insights into the mechanism of action of epirubicin. Beyond the target predicted in silico (a DNA gyrase in the apicoplast), functional assays suggested a GlcNac-1-P-transferase (GPT) enzyme as a potential target. Docking calculations predicted the binding mode of epirubicin with DNA gyrase and GPT proteins. Epirubicin is originally an antitumoral agent and presents associated toxicity. However, its antiplasmodial activity against not only P. falciparum but also P. vivax in different stages of the parasite life cycle supports the use of this drug as a scaffold for hit-to-lead optimization in malaria drug discovery.


2013 ◽  
Vol 8 (9) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Martha Induli ◽  
Meron Gebru ◽  
Negera Abdissa ◽  
Hosea Akala ◽  
Ingrid Wekesa ◽  
...  

Extracts of the rhizomes of Kniphofia foliosa exhibited antiplasmodial activities against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum with IC50 values of 3–5 μg/mL. A phenyloxanthrone, named 10-acetonylknipholone cyclooxanthrone (1) and an anthraquinone-anthrone dimer, chryslandicin 10-methyl ether (2), were isolated from the rhizomes, along with known quinones, including the rare phenylanthraquinone dimers, joziknipholones A and B. The structures of these compounds were determined based on spectroscopic data. This is the second report on the occurrence of the dimeric phenylanthraquinones in nature. In an in vitro antiplasmodial assay of the isolated compounds, activity was observed for phenylanthraquinones, anthraquinone-anthrone dimers and dimeric phenylanthraquinones, with joziknipholone A being the most active. The new compound, 10-acetonylknipholone cyclooxanthrone, also showed anti-plasmodial activity. In an in vivo assay, knipholone anthrone displayed marginal antimalarial activity.


ChemInform ◽  
2004 ◽  
Vol 35 (26) ◽  
Author(s):  
Valter F. de Andrade-Neto ◽  
Marilia O. F. Goulart ◽  
Jorge F. da Silva Filho ◽  
Matuzalem J. da Silva ◽  
Maria do Carmo F. R. Pinto ◽  
...  

2013 ◽  
Vol 288 (23) ◽  
pp. 16506-16517 ◽  
Author(s):  
Sílvia Sanz ◽  
Giulia Bandini ◽  
Diego Ospina ◽  
Maria Bernabeu ◽  
Karina Mariño ◽  
...  

Carbohydrate structures play important roles in many biological processes, including cell adhesion, cell-cell communication, and host-pathogen interactions. Sugar nucleotides are activated forms of sugars used by the cell as donors for most glycosylation reactions. Using a liquid chromatography-tandem mass spectrometry-based method, we identified and quantified the pools of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, GDP-mannose, and GDP-fucose in Plasmodium falciparum intraerythrocytic life stages. We assembled these data with the in silico functional reconstruction of the parasite metabolic pathways obtained from the P. falciparum annotated genome, exposing new active biosynthetic routes crucial for further glycosylation reactions. Fucose is a sugar present in glycoconjugates often associated with recognition and adhesion events. Thus, the GDP-fucose precursor is essential in a wide variety of organisms. P. falciparum presents homologues of GDP-mannose 4,6-dehydratase and GDP-l-fucose synthase enzymes that are active in vitro, indicating that most GDP-fucose is formed by a de novo pathway that involves the bioconversion of GDP-mannose. Homologues for enzymes involved in a fucose salvage pathway are apparently absent in the P. falciparum genome. This is in agreement with in vivo metabolic labeling experiments showing that fucose is not significantly incorporated by the parasite. Fluorescence microscopy of epitope-tagged versions of P. falciparum GDP-mannose 4,6-dehydratase and GDP-l-fucose synthase expressed in transgenic 3D7 parasites shows that these enzymes localize in the cytoplasm of P. falciparum during the intraerythrocytic developmental cycle. Although the function of fucose in the parasite is not known, the presence of GDP-fucose suggests that the metabolite may be used for further fucosylation reactions.


1995 ◽  
Vol 15 (4) ◽  
pp. 1999-2009 ◽  
Author(s):  
J N Hirschhorn ◽  
A L Bortvin ◽  
S L Ricupero-Hovasse ◽  
F Winston

Nucleosomes have been shown to repress transcription both in vitro and in vivo. However, the mechanisms by which this repression is overcome are only beginning to be understood. Recent evidence suggests that in the yeast Saccharomyces cerevisiae, many transcriptional activators require the SNF/SWI complex to overcome chromatin-mediated repression. We have identified a new class of mutations in the histone H2A-encoding gene HTA1 that causes transcriptional defects at the SNF/SWI-dependent gene SUC2. Some of the mutations are semidominant, and most of the predicted amino acid changes are in or near the N- and C-terminal regions of histone H2A. A deletion that removes the N-terminal tail of histone H2A also caused a decrease in SUC2 transcription. Strains carrying these histone mutations also exhibited defects in activation by LexA-GAL4, a SNF/SWI-dependent activator. However, these H2A mutants are phenotypically distinct from snf/swi mutants. First, not all SNF/SWI-dependent genes showed transcriptional defects in these histone mutants. Second, a suppressor of snf/swi mutations, spt6, did not suppress these histone mutations. Finally, unlike in snf/swi mutants, chromatin structure at the SUC2 promoter in these H2A mutants was in an active conformation. Thus, these H2A mutations seem to interfere with a transcription activation function downstream or independent of the SNF/SWI activity. Therefore, they may identify an additional step that is required to overcome repression by chromatin.


2019 ◽  
Vol 40 (3) ◽  
pp. 931-971 ◽  
Author(s):  
Lian‐Shun Feng ◽  
Zhi Xu ◽  
Le Chang ◽  
Chuan Li ◽  
Xiao‐Fei Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document