Hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug‐resistant Plasmodium falciparum

2019 ◽  
Vol 40 (3) ◽  
pp. 931-971 ◽  
Author(s):  
Lian‐Shun Feng ◽  
Zhi Xu ◽  
Le Chang ◽  
Chuan Li ◽  
Xiao‐Fei Yan ◽  
...  
Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1250-1255 ◽  
Author(s):  
S Whitehead ◽  
TE Peto

Abstract Deferoxamine (DF) has antimalarial activity that can be demonstrated in vitro and in vivo. This study is designed to examine the speed of onset and stage dependency of growth inhibition by DF and to determine whether its antimalarial activity is cytostatic or cytocidal. Growth inhibition was assessed by suppression of hypoxanthine incorporation and differences in morphologic appearance between treated and control parasites. Using synchronized in vitro cultures of Plasmodium falciparum, growth inhibition by DF was detected within a single parasite cycle. Ring and nonpigmented trophozoite stages were sensitive to the inhibitory effect of DF but cytostatic antimalarial activity was suggested by evidence of parasite recovery in later cycles. However, profound growth inhibition, with no evidence of subsequent recovery, occurred when pigmented trophozoites and early schizonts were exposed to DF. At this stage in parasite development, the activity of DF was cytocidal and furthermore, the critical period of exposure may be as short as 6 hours. These observations suggest that iron chelators may have a role in the treatment of clinical malaria.


2009 ◽  
Vol 105 (1) ◽  
pp. 275-279 ◽  
Author(s):  
Matheus Santos de Sá ◽  
José Fernando Oliveira Costa ◽  
Antoniana Ursine Krettli ◽  
Mariano Gustavo Zalis ◽  
Gabriela Lemos de Azevedo Maia ◽  
...  

2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Letícia Tiburcio Ferreira ◽  
Juliana Rodrigues ◽  
Gustavo Capatti Cassiano ◽  
Tatyana Almeida Tavella ◽  
Kaira Cristina Peralis Tomaz ◽  
...  

ABSTRACT Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Among the seven drugs identified as promising antimalarial candidates, the anthracycline epirubicin was selected for further experimental validation. Epirubicin was shown to be potent in vitro against sensitive and multidrug-resistant P. falciparum strains and P. vivax field isolates in the nanomolar range, as well as being effective against an in vivo murine model of Plasmodium yoelii. Transmission-blocking activity was observed for epirubicin in vitro and in vivo. Finally, using yeast-based haploinsufficiency chemical genomic profiling, we aimed to get insights into the mechanism of action of epirubicin. Beyond the target predicted in silico (a DNA gyrase in the apicoplast), functional assays suggested a GlcNac-1-P-transferase (GPT) enzyme as a potential target. Docking calculations predicted the binding mode of epirubicin with DNA gyrase and GPT proteins. Epirubicin is originally an antitumoral agent and presents associated toxicity. However, its antiplasmodial activity against not only P. falciparum but also P. vivax in different stages of the parasite life cycle supports the use of this drug as a scaffold for hit-to-lead optimization in malaria drug discovery.


2013 ◽  
Vol 8 (9) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Martha Induli ◽  
Meron Gebru ◽  
Negera Abdissa ◽  
Hosea Akala ◽  
Ingrid Wekesa ◽  
...  

Extracts of the rhizomes of Kniphofia foliosa exhibited antiplasmodial activities against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum with IC50 values of 3–5 μg/mL. A phenyloxanthrone, named 10-acetonylknipholone cyclooxanthrone (1) and an anthraquinone-anthrone dimer, chryslandicin 10-methyl ether (2), were isolated from the rhizomes, along with known quinones, including the rare phenylanthraquinone dimers, joziknipholones A and B. The structures of these compounds were determined based on spectroscopic data. This is the second report on the occurrence of the dimeric phenylanthraquinones in nature. In an in vitro antiplasmodial assay of the isolated compounds, activity was observed for phenylanthraquinones, anthraquinone-anthrone dimers and dimeric phenylanthraquinones, with joziknipholone A being the most active. The new compound, 10-acetonylknipholone cyclooxanthrone, also showed anti-plasmodial activity. In an in vivo assay, knipholone anthrone displayed marginal antimalarial activity.


ChemInform ◽  
2004 ◽  
Vol 35 (26) ◽  
Author(s):  
Valter F. de Andrade-Neto ◽  
Marilia O. F. Goulart ◽  
Jorge F. da Silva Filho ◽  
Matuzalem J. da Silva ◽  
Maria do Carmo F. R. Pinto ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Kirti Mishra ◽  
Aditya P. Dash ◽  
Nrisingha Dey

Andrographolide (AND), the diterpene lactone compound, was purified by HPLC from the methanolic fraction of the plantAndrographis paniculata. The compound was found to have potent antiplasmodial activity when tested in isolation and in combination with curcumin and artesunate against the erythrocytic stages ofPlasmodium falciparum in vitroandPlasmodium bergheiANKAin vivo. IC50s for artesunate (AS), andrographolide (AND), and curcumin (CUR) were found to be 0.05, 9.1 and 17.4 μM, respectively. The compound (AND) was found synergistic with curcumin (CUR) and addictively interactive with artesunate (AS).In vivo, andrographolide-curcumin exhibited better antimalarial activity, not only by reducing parasitemia (29%), compared to the control (81%), but also by extending the life span by 2-3 folds. Being nontoxic to thein vivosystem this agent can be used as template molecule for designing new derivatives with improved antimalarial properties.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Wiwied Ekasari ◽  
Dwi Widya Pratiwi ◽  
Zelmira Amanda ◽  
Suciati ◽  
Aty Widyawaruyanti ◽  
...  

Background. Each part of H. annuus plants is traditionally used as medicinal remedies for several diseases, including malaria. Antimalarial activity of the leaf and the seed has already been observed; however, there is no report about antimalarial activity of the other parts of H. annuus plants. In this study, we assess in vitro and in vivo antimalarial activity of each part of the plants and its mechanism as antimalarial agent against inhibition of heme detoxification. Objective. To investigate the antimalarial activity of various parts of H. annuus. Methods. Various parts of the H. annuus plant were tested for in vitro antimalarial activity against Plasmodium falciparum 3D7 strain (chloroquine-sensitive), in vivo antimalarial activity against P. berghei using Peters’ 4-day suppressive test in BALB/c mice, curative and prophylaxis assay, and inhibition of heme detoxification by evaluating β-hematin level. Results. Ethanol extract of the roots showed the highest antimalarial activity, followed by ethanol extract of leaves, with IC50 values of 2.3 ± 1.4 and 4.3 ± 2.2 μg/mL, respectively and the percentage inhibition of P. berghei of 63.6 ± 8.0 and 59.3 ± 13.2 at a dose of 100 mg/kg, respectively. Ethanol extract of roots produced an ED50 value of 10.6 ± 0.2 mg/kg in the curative test and showed an inhibition of 79.2% at a dose of 400 mg/kg in the prophylactic assay. In inhibition of heme detoxification assay, root and leaf ethanol extracts yielded a lower IC50 value than positive (chloroquine) control with a value of 0.4 ± 0.0 and 0.5 ± 0.0 mg/mL, respectively. Conclusion. There were promising results of the ethanol extracts of root of H. annuus as a new source for the development of a new plant-based antimalarial agent.


2012 ◽  
Vol 56 (4) ◽  
pp. 2191-2193 ◽  
Author(s):  
Akiko Kimura ◽  
Hiroshi Nishikawa ◽  
Nobuhiko Nomura ◽  
Junichi Mitsuyama ◽  
Shinya Fukumoto ◽  
...  

ABSTRACTT-2307, a novel arylamidine, has been shown to exhibit broad-spectrum antifungal activities against clinically significant pathogens. Here, we evaluated thein vitroandin vivoantimalarial activity of T-2307. The 50% inhibitory concentrations (IC50s) of T-2307 againstPlasmodium falciparumFCR-3 and K-1 strains were 0.47 and 0.17 μM, respectively. T-2307 at 2.5 to 10 mg/kg of body weight/day exhibited activity against blood stage and liver stage parasites in rodent malaria models. In conclusion, T-2307 exhibitedin vitroandin vivoantimalarial activity.


2009 ◽  
Vol 53 (10) ◽  
pp. 4339-4344 ◽  
Author(s):  
Fausta Omodeo-Salè ◽  
Lucia Cortelezzi ◽  
Nicoletta Basilico ◽  
Manolo Casagrande ◽  
Anna Sparatore ◽  
...  

ABSTRACT Two new quinolizidinyl-alkyl derivatives of 7-chloro-4-aminoquinoline, named AM-1 and AP4b, which are highly effective in vitro against both the D10 (chloroquine [CQ] susceptible) and W2 (CQ resistant) strains of Plasmodium falciparum and in vivo in the rodent malaria model, have been studied for their ability to bind to and be internalized by normal or parasitized human red blood cells (RBC) and for their effects on RBC membrane stability. In addition, an analysis of the heme binding properties of these compounds and of their ability to inhibit beta-hematin formation in vitro has been performed. Binding of AM1 or AP4b to RBC is rapid, dose dependent, and linearly related to RBC density. Their accumulation in parasitized RBC (pRBC) is increased twofold compared to levels in normal RBC. Binding of AM1 or AP4b to both normal and pRBC is higher than that of CQ, in agreement with the lower pKa and higher lipophilicity of the compounds. AM1 or AP4b is not hemolytic per se and is less hemolytic than CQ when hemolysis is accelerated (induced) by hematin. Moreover, AM-1 and AP4b bind heme with a stoichiometry of interaction similar to that of CQ (about 1:1.7) but with a lower affinity. They both inhibit dose dependently the formation of beta-hematin in vitro with a 50% inhibitory concentration comparable to that of CQ. Taken together, these results suggest that the antimalarial activity of AM1 or AP4b is likely due to inhibition of hemozoin formation and that the efficacy of these compounds against the CQ-resistant strains can be ascribed to their hydrophobicity and capacity to accumulate in the vacuolar lipid (elevated lipid accumulation ratios).


RSC Advances ◽  
2016 ◽  
Vol 6 (107) ◽  
pp. 105676-105689 ◽  
Author(s):  
Srinivasarao Kondaparla ◽  
Awakash Soni ◽  
Ashan Manhas ◽  
Kumkum Srivastava ◽  
Sunil K. Puri ◽  
...  

In the present study we have synthesized a new class of 4-aminoquinoline derivatives and bioevaluated them for antimalarial activity against theP. falciparum in vitro(3D7 & K1) andP. yoelii in vivo(N-67 strain).


Sign in / Sign up

Export Citation Format

Share Document