scholarly journals Hemolysis of Erythrocytes by Granulysin-Derived Peptides but Not by Granulysin

2005 ◽  
Vol 49 (1) ◽  
pp. 388-397 ◽  
Author(s):  
Qing Li ◽  
Chen Dong ◽  
Anmei Deng ◽  
Masao Katsumata ◽  
Ari Nakadai ◽  
...  

ABSTRACT Granulysin, a 9-kDa protein localized in human cytolytic T lymphoctyes and natural killer cell granules, is cytolytic against tumors and microbes but not against red blood cells. Synthetic peptides corresponding to the central region of granulysin recapitulate the lytic activity of the intact molecule, and some peptides cause hemolysis of red blood cells. Peptides in which cysteine residues were replaced by serine maintain their activity against microbes but lose activity against human cells, suggesting their potential as antibiotics. Studies were undertaken to determine the mechanism of resistance of red blood cells to granulysin and sensitivity to a subset of granulysin-derived peptides. Granulysin lyses immature reticulocytes, which have mitochondria, but not red blood cells. Granulysin lyses U937 cells but not U937 cells lacking mitochondrial DNA and a functional respiratory chain (U937ρ° cells), further demonstrating the requirement of intact mitochondria for granulysin-mediated death. Peptide G8, which corresponds to helix 2/loop 2/helix 3, lyses red blood cells, while peptide G9, which is identical except that the cysteine residues were replaced by serine, does not lyse red blood cells. Granulysin peptide-induced hemolysis is markedly inhibited by an anion transporter inhibitor and by Na+, K+, and Ca2+ channel blockers but not by Na+/K+ pump, cotransport, or Cl− channel blockers. Although recombinant granulysin and G9 peptide do not induce hemolysis, they both competitively inhibit G8-induced hemolysis. The finding that some derivatives of granulysin are hemolytic may have important implications for the design of granulysin-based antimicrobial therapeutics.

1926 ◽  
Vol 43 (1) ◽  
pp. 111-106
Author(s):  
Hobart A. Reimann ◽  
Louis A. Julianelle

A study has been made of the variation in number of the blood platelets, and the red and white blood cells of white mice injected with pneumococcus extract. The blood platelets were greatly diminished after the injection, the greatest decrease usually occurring after 24 hours. Purpuric lesions usually developed when the number of blood platelets became less than 500,000 per c.mm. Regeneration of the platelets was accomplished by the 4th to the 9th day but there was an overregeneration and the return to normal did not take place until 2 weeks had elapsed. The red cells were also greatly reduced in number, but the rate of their destruction and regeneration was somewhat slower than that of the platelets. The leucocytes were slightly if at all influenced by the pneumococcus extract. Pneumococcus extracts were shown to be thrombolytic and hemolytic. Heat destroyed the activity of both the lysins in vitro. Heated extract produced purpura in mice but did not cause a severe anemia. Extracts adsorbed with either blood platelets or red blood cells showed a marked diminution in their thrombolytic and hemolytic activity in vitro. Such extracts, however, produced purpura as well as severe anemia and thrombopenia in mice.


Blood ◽  
1998 ◽  
Vol 91 (6) ◽  
pp. 2146-2151 ◽  
Author(s):  
Hani Hassoun ◽  
Toshihiko Hanada ◽  
Mohini Lutchman ◽  
Kenneth E. Sahr ◽  
Jiri Palek ◽  
...  

Abstract Glycophorin A is the major transmembrane sialoglycoprotein of red blood cells. It has been shown to contribute to the expression of the MN and Wright blood group antigens, to act as a receptor for the malaria parasite Plasmodium falciparum and Sendai virus, and along with the anion transporter, band 3, may contribute to the mechanical properties of the red blood cell membrane. Several lines of evidence suggest a close interaction between glycophorin A and band 3 during their biosynthesis. Recently, we have generated mice where the band 3 expression was completely eliminated by selective inactivation of the AE1 anion exchanger gene, thus allowing us to study the effect of band 3 on the expression of red blood cell membrane proteins. In this report, we show that the band 3 −/− red blood cells contain protein 4.1, adducin, dematin, p55, and glycophorin C. In contrast, the band 3 −/− red blood cells are completely devoid of glycophorin A (GPA), as assessed by Western blot and immunocytochemistry techniques, whereas the polymerase chain reaction (PCR) confirmed the presence of GPA mRNA. Pulse-label and pulse-chase experiments show that GPA is not incorporated in the membrane and is rapidly degraded in the cytoplasm. Based on these findings and other published evidence, we propose that band 3 plays a chaperone-like role, which is necessary for the recruitment of GPA to the red blood cell plasma membrane.


2008 ◽  
pp. 621-629
Author(s):  
E Tellone ◽  
S Ficarra ◽  
R Scatena ◽  
B Giardina ◽  
A Kotyk ◽  
...  

The effects of gemfibrozil (GFZ), an antihyperlipidemic agent, on the anionic transport of the human red blood cells (RBC) during the oxygenation-deoxygenation cycle were examined. Gemfibrozil clearly plays a role in the modulation of the anionic flux in erythrocytes; in fact it causes a strong increment of anions transport when the RBCs are in the high-oxygenation state (HOS). Such an effect is remarkably reduced in the lowoxygenation state (LOS). With the aim of identifying the dynamics of fibrate action, this effect has been investigated also in human ghost and chicken erythrocytes. These latter, in fact, are known to possess a B3 (anion transporter or Band 3) modified at the cytoplasmic domain (cdb3) which plays a significant role in the metabolic modulation of red blood cells. The results were analyzed taking into account the well-known interactions between fibrates and both conformational states of hemoglobin i.e. the T state (deoxy-conformation) and the R state (oxy-conformation). The effect of gemfibrozil on anionic influx appears to be due to a wide interaction involving a “multimeric” Hb-GFZ-cdb3 macromolecular complex.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Gabriela Ferreira Dias ◽  
Gabriela Bohnen ◽  
Nadja Grobe ◽  
Xia Tao ◽  
Roberto Pecoits-Filho ◽  
...  

Abstract Background and Aims We have previously described that indoxyl sulfate promotes red blood cells (RBC) ROS generation through organic anion transporter 2 as well as NADPH oxidase activity-dependent and GSH-independent mechanisms (Dias et al., 2018). However, there is little information regarding pathways of antioxidant balance to protect RBC from extensive oxidative stress that occurs during hemodialysis (HD). Intracellular free heme is degraded by Heme Oxygenase 1 (HO-1), which is regarded as the major cytoprotective enzyme (Maines, 1988; Gozzelino et al., 2010). In the current study, we assessed HO-1 activity and ROS production in RBC from healthy subjects and hemodialysis (HD) patients before and after HD. Method Blood was drawn from 6 healthy individuals (CON-RBC) and 6 HD patients (HD-RBC) before (pre/HD-RBC) and after high flux HD (post/HD-RBC). Isolated RBC were stained with DCFH-DA (Abcam) for ROS measurements. To quantify HO-1, RBC were incubated with anti-HO-1 antibody (Abcam) and m-IgGκ BP-CFL 488 (Santa Cruz Biotechnology) as a secondary antibody. Samples were analyzed by flow cytometry. Results Our results show a 4-fold increase in ROS levels in pre/HD-RBC compared to CON-RBC. ROS levels were even further increased by 1.65-fold after HD treatment in post/HD-RBC (Figure 1). Both pre/HD-RBC and post/HD-RBC showed a similarly significant increase of 3.3-fold in HO-1 compared to CON-RBC. (Figure 1). Conclusion High levels of HO-1 may represent a defense against oxidative stress that occurs in ESKD and particularly during the HD session. Further research is needed to evaluate whether HO-1 overexpression could accelerate heme degradation and contribute to renal anemia.


Blood ◽  
1994 ◽  
Vol 84 (3) ◽  
pp. 916-922 ◽  
Author(s):  
LJ Bruce ◽  
JD Groves ◽  
Y Okubo ◽  
B Thilaganathan ◽  
MJ Tanner

The anion transport activity of the human erythrocyte anion transporter (band 3; AE1) has been examined in both normal and glycophorin A (GPA)- deficient (MkMk) human red blood cells (RBCs). The sulfate transport activity of MkMk cells (from two ethnically diverse sources) was approximately 60% that of normal erythrocytes under the transport assay conditions used. However, MkMk and normal RBCs contained similar amounts of band 3. The reduction in sulfate transport activity was shown to be caused by an increase in the apparent Km for sulfate in MkMk RBCs, suggesting the band 3 in the MkMk RBCs has a lowered binding affinity for sulfate anions. The size of the N-glycan chain on band 3 of the MkMk cells was larger than that on band 3 from normal RBCs. In contrast, the size of the N-glycan chain on the glucose transporter (GLUT1) from MkMk cells was smaller than that on GLUT1 from normal cells. The possible role of GPA in the biosynthesis and anion transport activity of band 3 in normal RBCs is discussed.


Blood ◽  
1994 ◽  
Vol 84 (3) ◽  
pp. 916-922 ◽  
Author(s):  
LJ Bruce ◽  
JD Groves ◽  
Y Okubo ◽  
B Thilaganathan ◽  
MJ Tanner

Abstract The anion transport activity of the human erythrocyte anion transporter (band 3; AE1) has been examined in both normal and glycophorin A (GPA)- deficient (MkMk) human red blood cells (RBCs). The sulfate transport activity of MkMk cells (from two ethnically diverse sources) was approximately 60% that of normal erythrocytes under the transport assay conditions used. However, MkMk and normal RBCs contained similar amounts of band 3. The reduction in sulfate transport activity was shown to be caused by an increase in the apparent Km for sulfate in MkMk RBCs, suggesting the band 3 in the MkMk RBCs has a lowered binding affinity for sulfate anions. The size of the N-glycan chain on band 3 of the MkMk cells was larger than that on band 3 from normal RBCs. In contrast, the size of the N-glycan chain on the glucose transporter (GLUT1) from MkMk cells was smaller than that on GLUT1 from normal cells. The possible role of GPA in the biosynthesis and anion transport activity of band 3 in normal RBCs is discussed.


2017 ◽  
Vol 21 (10) ◽  
pp. 143-150
Author(s):  
A.S. Gil’mutdinova ◽  
V.A. Ermokhin ◽  
N.A. Klenova ◽  
P.P. Purygin

The study of condition of the system of hemoglobin, release of peptide com- pounds, and proteolytic activity of human erythrocytes under conditions of hy- perglycemia of varying degrees is carried out. The increase in the level of hy- perglycemia is accompanied by a decrease of affinity of hemoglobin to oxygen and the growth of level of metgemoglobin, the glycosylated hemoglobin level is increased in conditions of severe hyperglycemia. The level of formation of pep- tides in erythrocytes and the level of output of their cells is determined by the increase in trypsin-like activity in cytosol and increased membrane permeability of red blood cells.


Sign in / Sign up

Export Citation Format

Share Document