scholarly journals Influence of gemfibrozil on sulfate transport in human erythrocytes during the oxygenation-deoxygenation cycle

2008 ◽  
pp. 621-629
Author(s):  
E Tellone ◽  
S Ficarra ◽  
R Scatena ◽  
B Giardina ◽  
A Kotyk ◽  
...  

The effects of gemfibrozil (GFZ), an antihyperlipidemic agent, on the anionic transport of the human red blood cells (RBC) during the oxygenation-deoxygenation cycle were examined. Gemfibrozil clearly plays a role in the modulation of the anionic flux in erythrocytes; in fact it causes a strong increment of anions transport when the RBCs are in the high-oxygenation state (HOS). Such an effect is remarkably reduced in the lowoxygenation state (LOS). With the aim of identifying the dynamics of fibrate action, this effect has been investigated also in human ghost and chicken erythrocytes. These latter, in fact, are known to possess a B3 (anion transporter or Band 3) modified at the cytoplasmic domain (cdb3) which plays a significant role in the metabolic modulation of red blood cells. The results were analyzed taking into account the well-known interactions between fibrates and both conformational states of hemoglobin i.e. the T state (deoxy-conformation) and the R state (oxy-conformation). The effect of gemfibrozil on anionic influx appears to be due to a wide interaction involving a “multimeric” Hb-GFZ-cdb3 macromolecular complex.

Blood ◽  
1994 ◽  
Vol 84 (3) ◽  
pp. 916-922 ◽  
Author(s):  
LJ Bruce ◽  
JD Groves ◽  
Y Okubo ◽  
B Thilaganathan ◽  
MJ Tanner

The anion transport activity of the human erythrocyte anion transporter (band 3; AE1) has been examined in both normal and glycophorin A (GPA)- deficient (MkMk) human red blood cells (RBCs). The sulfate transport activity of MkMk cells (from two ethnically diverse sources) was approximately 60% that of normal erythrocytes under the transport assay conditions used. However, MkMk and normal RBCs contained similar amounts of band 3. The reduction in sulfate transport activity was shown to be caused by an increase in the apparent Km for sulfate in MkMk RBCs, suggesting the band 3 in the MkMk RBCs has a lowered binding affinity for sulfate anions. The size of the N-glycan chain on band 3 of the MkMk cells was larger than that on band 3 from normal RBCs. In contrast, the size of the N-glycan chain on the glucose transporter (GLUT1) from MkMk cells was smaller than that on GLUT1 from normal cells. The possible role of GPA in the biosynthesis and anion transport activity of band 3 in normal RBCs is discussed.


Blood ◽  
1994 ◽  
Vol 84 (3) ◽  
pp. 916-922 ◽  
Author(s):  
LJ Bruce ◽  
JD Groves ◽  
Y Okubo ◽  
B Thilaganathan ◽  
MJ Tanner

Abstract The anion transport activity of the human erythrocyte anion transporter (band 3; AE1) has been examined in both normal and glycophorin A (GPA)- deficient (MkMk) human red blood cells (RBCs). The sulfate transport activity of MkMk cells (from two ethnically diverse sources) was approximately 60% that of normal erythrocytes under the transport assay conditions used. However, MkMk and normal RBCs contained similar amounts of band 3. The reduction in sulfate transport activity was shown to be caused by an increase in the apparent Km for sulfate in MkMk RBCs, suggesting the band 3 in the MkMk RBCs has a lowered binding affinity for sulfate anions. The size of the N-glycan chain on band 3 of the MkMk cells was larger than that on band 3 from normal RBCs. In contrast, the size of the N-glycan chain on the glucose transporter (GLUT1) from MkMk cells was smaller than that on GLUT1 from normal cells. The possible role of GPA in the biosynthesis and anion transport activity of band 3 in normal RBCs is discussed.


1992 ◽  
Vol 117 (1) ◽  
Author(s):  
Anna Giuliani ◽  
Stefano Marini ◽  
Lucietta Ferroni ◽  
Patrizia Caprari ◽  
SaverioG. Cond� ◽  
...  

Blood ◽  
1998 ◽  
Vol 91 (6) ◽  
pp. 2146-2151 ◽  
Author(s):  
Hani Hassoun ◽  
Toshihiko Hanada ◽  
Mohini Lutchman ◽  
Kenneth E. Sahr ◽  
Jiri Palek ◽  
...  

Abstract Glycophorin A is the major transmembrane sialoglycoprotein of red blood cells. It has been shown to contribute to the expression of the MN and Wright blood group antigens, to act as a receptor for the malaria parasite Plasmodium falciparum and Sendai virus, and along with the anion transporter, band 3, may contribute to the mechanical properties of the red blood cell membrane. Several lines of evidence suggest a close interaction between glycophorin A and band 3 during their biosynthesis. Recently, we have generated mice where the band 3 expression was completely eliminated by selective inactivation of the AE1 anion exchanger gene, thus allowing us to study the effect of band 3 on the expression of red blood cell membrane proteins. In this report, we show that the band 3 −/− red blood cells contain protein 4.1, adducin, dematin, p55, and glycophorin C. In contrast, the band 3 −/− red blood cells are completely devoid of glycophorin A (GPA), as assessed by Western blot and immunocytochemistry techniques, whereas the polymerase chain reaction (PCR) confirmed the presence of GPA mRNA. Pulse-label and pulse-chase experiments show that GPA is not incorporated in the membrane and is rapidly degraded in the cytoplasm. Based on these findings and other published evidence, we propose that band 3 plays a chaperone-like role, which is necessary for the recruitment of GPA to the red blood cell plasma membrane.


2013 ◽  
Vol 98 (6) ◽  
pp. 2494-2501 ◽  
Author(s):  
Luciana Bordin ◽  
Gabriella Donà ◽  
Chiara Sabbadin ◽  
Eugenio Ragazzi ◽  
Alessandra Andrisani ◽  
...  

Context: Aldosterone (Aldo) effects include NADPH oxidase activation involved in Aldo-related oxidative stress. Red blood cells (RBCs) are particularly sensitive to oxidative assault, and both the formation of high molecular weight aggregates (HMWAs) and the diamide-induced Tyr phosphorylation (Tyr-P) level of membrane band 3 can be used to monitor their redox status. Objective: The Aldo-related alterations in erythrocytes were evaluated by comparing in vitro evidence. Design: This was a multicenter comparative study. Study Participants: The study included 12 patients affected by primary aldosteronism (PA) and 6 healthy control subjects (HCs), whose RBCs were compared with those of patients with PA. For in vitro experiments, RBCs from HCs were incubated with increasing Aldo concentrations. Main Outcome Measures: The Tyr-P level, band 3 HMWA formation, and autologous IgG binding were evaluated. Results: In patients with PA, both Tyr-P levels and band 3 HMWAs were higher than those in HCs. RBCs from HCs were treated with increasing Aldo concentrations in both platelet-poor plasma (PPP) and charcoal-stripped (CS)-PPP. Results showed that Aldo had dose- and time-dependent effects on band 3 Tyr-P and HMWA formation in CS-PPP more than in PPP. These effects were almost completely prevented by canrenone or cortisol. Aldo-related membrane alterations led to increased autologous IgG binding. Conclusions: Erythrocytes from patients with PA show oxidative-like stress evidenced by increased HMWA content and diamide-induced band 3 Tyr-P level. Aldo effects are mediated by the mineralocorticoid receptor, as suggested by the inhibitory effects of canrenone, an antagonist of Aldo. In CS-PPP, in which Aldo induces remarkable membrane alterations leading to IgG binding, Aldo may be responsible for premature RBC removal from circulation.


2015 ◽  
Vol 17 (7) ◽  
pp. 1052-1068 ◽  
Author(s):  
Urska Repnik ◽  
Preetish Gangopadhyay ◽  
Sven Bietz ◽  
Jude M. Przyborski ◽  
Gareth Griffiths ◽  
...  

1991 ◽  
Vol 261 (5) ◽  
pp. C814-C821 ◽  
Author(s):  
P. A. King ◽  
R. B. Gunn

Stilbene-sensitive glycine transport was investigated in human red blood cells and ghosts. We have found that this component of glycine transport was inhibited by the stilbene derivatives 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS); the apparent constant for inhibition by DNDS was 4 microM in the presence of 150 mM chloride. DNDS-sensitive glycine influx was modulated by pH such that as pH was increased from 5.9 to 9.2, transport increased from 2.5 to 140 mumol.kg Hb-1.h-1 at 37 degrees C and 100 microM glycine. The increased transport was correlated with an increase in the amount of glycine present as the anion over this pH range (0.03-40 microM glycine anion), but, in addition, pH had a direct effect on transport. Glycine influx was studied as a function of glycine anion concentration with anion varied by changing pH at a constant total glycine concentration and by changing total glycine at a constant pH. A comparison of these data demonstrated that the stilbene-sensitive glycine anion flux is stimulated by protons with half-maximal stimulation below pH 6.5 and suggests that the glycine anion and a proton are cotransported. Inorganic anions transported by band 3, including Cl, NO3, and SO4, inhibited glycine transport. Glycine flux into resealed ghosts was inhibited by Cl with an inhibition constant of 25 mM. The similarities between the kinetic constants for transport inhibition by Cl and DNDS and the kinetic constants for Cl and DNDS binding to band 3 suggest that the DNDS-sensitive glycine anion and proton cotransport is via band 3.


1986 ◽  
Vol 103 (3) ◽  
pp. 819-828 ◽  
Author(s):  
D E Golan ◽  
C S Brown ◽  
C M Cianci ◽  
S T Furlong ◽  
J P Caulfield

Human red blood cells (RBCs) adhere to and are lysed by schistosomula of Schistosoma mansoni. We have investigated the mechanism of RBC lysis by comparing the dynamic properties of transmembrane protein and lipid probes in adherent ghost membranes with those in control RBCs and in RBCs treated with various membrane perturbants. Fluorescence photobleaching recovery was used to measure the lateral mobility of two integral membrane proteins, glycophorin and band 3, and two lipid analogues, fluorescein phosphatidylethanolamine (Fl-PE) and carbocyanine dyes, in RBCs and ghosts adherent to schistosomula. Adherent ghosts manifested 95-100% immobilization of both membrane proteins and 45-55% immobilization of both lipid probes. In separate experiments, diamide-induced cross-linking of RBC cytoskeletal proteins slowed transmembrane protein diffusion by 30-40%, without affecting either transmembrane protein fractional mobility or lipid probe lateral mobility. Wheat germ agglutinin- and polylysine-induced cross-linking of glycophorin at the extracellular surface caused 80-95% immobilization of the transmembrane proteins, without affecting the fractional mobility of the lipid probe. Egg lysophosphatidylcholine (lysoPC) induced both lysis of RBCs and a concentration-dependent decrease in the lateral mobility of glycophorin, band 3, and Fl-PE in ghost membranes. At a concentration of 8.4 micrograms/ml, lysoPC caused a pattern of protein and lipid immobilization in RBC ghosts identical to that in ghosts adherent to schistosomula. Schistosomula incubated with labeled palmitate released lysoPC into the culture medium at a rate of 1.5 fmol/h per 10(3) organisms. These data suggest that lysoPC is transferred from schistosomula to adherent RBCs, causing their lysis.


Sign in / Sign up

Export Citation Format

Share Document