scholarly journals phrR-Like Gene praR of Azorhizobium caulinodans ORS571 Is Essential for Symbiosis with Sesbania rostrata and Is Involved in Expression of reb Genes

2010 ◽  
Vol 76 (11) ◽  
pp. 3475-3485 ◽  
Author(s):  
Noriko Akiba ◽  
Toshihiro Aono ◽  
Hiroki Toyazaki ◽  
Satoru Sato ◽  
Hiroshi Oyaizu

ABSTRACT This study focuses on the function of the gene praR that encodes a putative transcription factor in Azorhizobium caulinodans ORS571, a microsymbiont of Sesbania rostrata. The praR gene is a homolog of the phrR gene of Sinorhizobium medicae WSM419, and the praR and phrR homologs are distributed throughout the class Alphaproteobacteria. The growth and nitrogen fixation activity of an A. caulinodans praR deletion mutant in the free-living state were not significantly different from those of the wild-type strain. However, the stem nodules formed by the praR mutant showed lower nitrogen fixation activity than the wild-type stem nodules. Microscopy revealed that infected host cells with an oval or elongated shape were observed at early stages in the nodules formed by the praR mutant, but these infected cells gradually fell into two types. One maintained an oval or elongated shape, but the vacuoles in these cells gradually enlarged and the bacteria gradually disappeared. The other cells were shrunken with bacteria remaining inside. Microarrays revealed that genes homologous to the reb genes of Caedibacter taeniospiralis were highly expressed in the praR mutant. Furthermore, the stem nodules formed by an A. caulinodans mutant with a deletion of praR and reb-homologous genes showed high nitrogen fixation activity, comparable to that of the wild-type stem nodules, and were filled with oval or elongated host cells. These results suggest that PraR controls the expression of the reb-homologous genes and that high expression of reb-homologous genes causes aberrance in A. caulinodans-S. rostrata symbiosis.

2012 ◽  
Vol 78 (17) ◽  
pp. 6251-6261 ◽  
Author(s):  
Azusa Nakajima ◽  
Toshihiro Aono ◽  
Shuhei Tsukada ◽  
Lowela Siarot ◽  
Tetsuhiro Ogawa ◽  
...  

ABSTRACTBacterial Lon proteases play important roles in a variety of biological processes in addition to housekeeping functions. In this study, we focused on the Lon protease ofAzorhizobium caulinodans, which can fix nitrogen both during free-living growth and in stem nodules of the legumeSesbania rostrata. The nitrogen fixation activity of anA. caulinodanslonmutant in the free-living state was not significantly different from that of the wild-type strain. However, the stem nodules formed by thelonmutant showed little or no nitrogen fixation activity. By microscopic analyses, two kinds of host cells were observed in the stem nodules formed by thelonmutant. One type has shrunken host cells containing a high density of bacteria, and the other type has oval or elongated host cells containing a low density or no bacteria. This phenotype is similar to apraRmutant highly expressing therebgenes. Quantitative reverse transcription-PCR analyses revealed thatrebgenes were also highly expressed in thelonmutant. Furthermore, alon rebdouble mutant formed stem nodules showing higher nitrogen fixation activity than thelonmutant, and shrunken host cells were not observed in these stem nodules. These results suggest that Lon protease is required to suppress the expression of therebgenes and that high expression ofrebgenes in part causes aberrance in theA. caulinodans-S. rostratasymbiosis. In addition to the suppression ofrebgenes, it was found that Lon protease was involved in the regulation of exopolysaccharide production and autoagglutination of bacterial cells.


2019 ◽  
Vol 32 (9) ◽  
pp. 1196-1209
Author(s):  
Zaiyong Si ◽  
Qianqian Yang ◽  
Rongrong Liang ◽  
Ling Chen ◽  
Dasong Chen ◽  
...  

Little is known about the genes participating in digalactosyldiacylglycerol (DGDG) synthesis during nodule symbiosis. Here, we identified full-length MtDGD1, a synthase of DGDG, and characterized its effect on symbiotic nitrogen fixation in Medicago truncatula. Immunofluorescence and immunoelectron microscopy showed that MtDGD1 was located on the symbiosome membranes in the infected cells. β-Glucuronidase histochemical staining revealed that MtDGD1 was highly expressed in the infection zone of young nodules as well as in the whole mature nodules. Compared with the control, MtDGD1-RNA interference transgenic plants exhibited significant decreases in nodule number, symbiotic nitrogen fixation activity, and DGDG abundance in the nodules, as well as abnormal nodule and symbiosome development. Overexpression of MtDGD1 resulted in enhancement of nodule number and nitrogen fixation activity. In response to phosphorus starvation, the MtDGD1 expression level was substantially upregulated and the abundance of nonphospholipid DGDG was significantly increased in the roots and nodules, accompanied by corresponding decreases in the abundance of phospholipids such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Overall, our results indicate that DGD1 contributes to effective nodule organogenesis and nitrogen fixation by affecting the synthesis and content of DGDG during symbiosis.


2007 ◽  
Vol 73 (20) ◽  
pp. 6650-6659 ◽  
Author(s):  
Shino Suzuki ◽  
Toshihiro Aono ◽  
Kyung-Bum Lee ◽  
Tadahiro Suzuki ◽  
Chi-Te Liu ◽  
...  

ABSTRACT The molecular and physiological mechanisms behind the maturation and maintenance of N2-fixing nodules during development of symbiosis between rhizobia and legumes still remain unclear, although the early events of symbiosis are relatively well understood. Azorhizobium caulinodans ORS571 is a microsymbiont of the tropical legume Sesbania rostrata, forming N2-fixing nodules not only on the roots but also on the stems. In this study, 10,080 transposon-inserted mutants of A. caulinodans ORS571 were individually inoculated onto the stems of S. rostrata, and those mutants that induced ineffective stem nodules, as displayed by halted development at various stages, were selected. From repeated observations on stem nodulation, 108 Tn5 mutants were selected and categorized into seven nodulation types based on size and N2 fixation activity. Tn5 insertions of some mutants were found in the well-known nodulation, nitrogen fixation, and symbiosis-related genes, such as nod, nif, and fix, respectively, lipopolysaccharide synthesis-related genes, C4 metabolism-related genes, and so on. However, other genes have not been reported to have roles in legume-rhizobium symbiosis. The list of newly identified symbiosis-related genes will present clues to aid in understanding the maturation and maintenance mechanisms of nodules.


2006 ◽  
Vol 80 (1) ◽  
pp. 360-371 ◽  
Author(s):  
Dorothea L. Sawicki ◽  
Silvia Perri ◽  
John M. Polo ◽  
Stanley G. Sawicki

ABSTRACT In order to establish nonlytic persistent infections (PI) of BHK cells, replicons derived from Sindbis (SIN) and Semliki Forest (SFV) viruses have mutations in nsP2. Five different nsP2 PI replicons were compared to wild-type (wt) SIN, SFV, and wt nsPs SIN replicons. Replicon PI BHK21 cells had viral RNA synthesis rates that were less than 5% of those of the wt virus and ∼10% or less of those of SIN wt replicon-infected cells, and, in contrast to wt virus and replicons containing wt nsP2, all showed a phenotype of continuous minus-strand synthesis and of unstable, mature replication/transcription complexes (RC+) that are active in plus-strand synthesis. Minus-strand synthesis and incorporation of [3H]uridine into replicative intermediates differed among PI replicons, depending on the location of the mutation in nsP2. Minus-strand synthesis by PI cells appeared normal; it was dependent on continuous P123 and P1234 polyprotein synthesis and ceased when protein synthesis was inhibited. The failure by the PI replicons to shut off minus-strand synthesis was not due to some defect in the PI cells but rather was due to the loss of some function in the mutated nsP2. This was demonstrated by showing that superinfection of PI cells with wt SFV triggered the shutdown of minus-strand synthesis, which we believe is a host response to infection with alphaviruses. Together, the results indicate alphavirus nsP2 functions to engage the host response to infection and activate a switch from the early-to-late phase. The loss of this function leads to continuous viral minus-strand synthesis and the production of unstable RC+.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Manabu Tobisa ◽  
Masataka Shimojo ◽  
Yasuhisa Masuda

We investigated the root distribution and nitrogen fixation activity of American jointvetch (Aeschynomene americanaL.) cv. Glenn, under waterlogging treatment. The plants were grown in pots under three different treatments: no waterlogging (control), 30 days of waterlogging (experiment 1), and 40 days of waterlogging (experiment 2). The plants were subjected to the treatments on day 14 after germination. Root dry matter (DM) weight distribution of waterlogged plants was shallower than controls after day 20 of waterlogging. Throughout the study period, the total root DM weight in waterlogged plants was similar to that in the controls. Enhanced rooting (adventitious roots) and nodule formation at the stem base were observed in waterlogged plants after day 20 of waterlogging. The average DM weight of individual nodules on the region of the stem between the soil surface and water surface of waterlogged plants was similar to that of individual taproot nodules in the controls. Waterlogged plants had slightly greater plant DM weight than the controls after 40 days of treatment. The total nitrogenase activity (TNA) of nodules and nodule DM weight were higher in waterlogged plants than in the controls. Waterlogged American jointvetch had roots with nodules both around the soil surface and in the area between the soil surface and water surface after 20 days of waterlogging, and they maintained high nitrogenase activity and net assimilation rate that resulted in an increased growth rate.


2011 ◽  
Vol 52 (No. 10) ◽  
pp. 435-440 ◽  
Author(s):  
M. Geneva ◽  
G. Zehirov ◽  
E. Djonova ◽  
N. Kaloyanova ◽  
G. Georgiev ◽  
...  

The study evaluated the response of pea (Pisum sativum cv. Avola) to arbuscular mycorrhizal fungi (AM) species Glomus mosseae and Glomus intraradices and Rhizobium leguminosarum bv. viceae, strain D 293, regarding the growth, photosynthesis, nodulation and nitrogen fixation activity. Pea plants were grown in a glasshouse until the flowering stage (35 days), in 4 kg plastic pots using leached cinnamonic forest soil (Chromic Luvisols – FAO) at P levels 13.2 (P1) and 39.8 (P2) mg P/kg soil. The obtained results demonstrated that the dual inoculation of pea plants significantly increased the plant biomass, photosynthetic rate, nodulation, and nitrogen fixation activity in comparison with single inoculation with Rhizobium leguminosarum bv. viceae strain D 293. On the other hand, coinoculation significantly increased the total phosphorus content in plant tissue, acid phosphatase activity and percentage of root colonization. The effectiveness of coinoculation with Rhizobium leguminosarum and Glomus mosseae was higher at the low phosphorus level while the coinoculation with Glomus intraradices appeared to be the most effective at higher phosphorus level.


2020 ◽  
pp. PBIOMES-09-19-0
Author(s):  
Rahul A. Bahulikar ◽  
Srinivasa R. Chaluvadi ◽  
Ivone Torres-Jerez ◽  
Jagadish Mosali ◽  
Jeffrey L. Bennetzen ◽  
...  

2007 ◽  
Vol 189 (24) ◽  
pp. 9050-9056 ◽  
Author(s):  
Chunxia Wang ◽  
Xiaoyan Sheng ◽  
Raymie C. Equi ◽  
Maria A. Trainer ◽  
Trevor C. Charles ◽  
...  

ABSTRACT Sinorhizobium meliloti cells store excess carbon as intracellular poly-3-hydroxybutyrate (PHB) granules that assist survival under fluctuating nutritional conditions. PHB granule-associated proteins (phasins) are proposed to regulate PHB synthesis and granule formation. Although the enzymology and genetics of PHB metabolism in S. meliloti have been well characterized, phasins have not yet been described for this organism. Comparison of the protein profiles of the wild type and a PHB synthesis mutant revealed two major proteins absent from the mutant. These were identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) as being encoded by the SMc00777 (phaP1) and SMc02111 (phaP2) genes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins associated with PHB granules followed by MALDI-TOF confirmed that PhaP1 and PhaP2 were the two major phasins. Double mutants were defective in PHB production, while single mutants still produced PHB, and unlike PHB synthesis mutants that have reduced exopolysaccharide, the double mutants had higher exopolysaccharide levels. Medicago truncatula plants inoculated with the double mutant exhibited reduced shoot dry weight (SDW), although there was no corresponding reduction in nitrogen fixation activity. Whether the phasins are involved in a metabolic regulatory response or whether the reduced SDW is due to a reduction in assimilation of fixed nitrogen rather than a reduction in nitrogen fixation activity remains to be established.


Sign in / Sign up

Export Citation Format

Share Document