scholarly journals Susceptibility of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) to the Entomopathogenic Fungus Metarhizium anisopliae when Feeding on Bacillus thuringiensis Cry3Bb1-Expressing Maize

2009 ◽  
Vol 75 (12) ◽  
pp. 3937-3943 ◽  
Author(s):  
Michael Meissle ◽  
Christina Pilz ◽  
Jörg Romeis

ABSTRACT Genetically engineered maize producing the insecticidal protein Cry3Bb1 from Bacillus thuringiensis (Bt maize) is protected against corn rootworms (Diabrotica spp.), which are serious maize pests in North America and Europe. The aim of the present study was to investigate the interaction of Bt maize (event MON88017) and the entomopathogenic fungus Metarhizium anisopliae for controlling the western corn rootworm, Diabrotica virgifera virgifera. Exposure to Cry3Bb1 expressed in Bt maize seedlings resulted in decreased weight gain in D. v. virgifera larvae but did not influence susceptibility to M. anisopliae. Adult beetles were not affected by Cry3Bb1 in their food, but mortality when feeding on maize leaves was higher than when feeding on silk. Adults were more susceptible to the fungus than larvae. The results indicate that the effects of Bt maize and M. anisopliae on D. v. virgifera are additive and that Bt maize does not interfere with the biological control provided by entomopathogenic fungi.

2005 ◽  
Vol 71 (4) ◽  
pp. 1765-1774 ◽  
Author(s):  
H. Ernest Schnepf ◽  
Stacey Lee ◽  
JoAnna Dojillo ◽  
Paula Burmeister ◽  
Kristin Fencil ◽  
...  

ABSTRACT Bacillus thuringiensis crystal proteins of the Cry34 and Cry35 classes function as binary toxins showing activity on the western corn rootworm, Diabrotica virgifera virgifera LeConte. We surveyed 6,499 B. thuringiensis isolates by hybridization for sequences related to cry35A genes, identifying 78 strains. Proteins of the appropriate molecular mass (ca. 44 kDa) for Cry35 were observed in 42 of the strains. Full-length, or nearly full-length, sequences of 34 cry34 genes and 16 cry35 genes were also obtained from cloning, PCR analysis, and DNA sequencing. These included representatives of all known Cry34A, Cry34B, Cry35A, and Cry35B classes, as well as a novel Cry34A/Cry35A-like pair. Bioassay analysis indicated that cry35-hybridizing strains not producing a ca. 14-kDa protein, indicative of Cry34, were not active on corn rootworms, and that the previously identified Cry34A/Cry35A pairs were more active than the Cry34B/Cry35B pairs. The cry35-hybridizing B. thuringiensis strains were found in locales and materials typical for other B. thuringiensis strains. Comparison of the sequences with the geographic origins of the strains showed that identical, or nearly identical, sequences were found in strains from both Australasia and the Americas. Sequence similarity searches revealed that Cry34 proteins are similar to predicted proteins in Photorhabdus luminescens and Dictyostelium discoidium, and that Cry35Ab1 contains a segment similar to beta-trefoil domains that may be a binding motif. The binary Cry34/Cry35 B. thuringiensis crystal proteins thus appear closely related to each other, are environmentally ubiquitous, and share sequence similarities consistent with activity through membrane disruption in target organisms.


Toxins ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 162 ◽  
Author(s):  
Jingtong Hou ◽  
Ruth Cong ◽  
Michi Izumi-Willcoxon ◽  
Hana Ali ◽  
Yi Zheng ◽  
...  

A novel Bacillus thuringiensis Cry protein, Cry8Hb, active against Diabrotica virgifera virgifera (Western corn rootworm, WCRW) was discovered. Unexpectedly, the anti-rootworm activity of the Cry8Hb toxin was enhanced significantly by fusing Escherichia coli maltose binding protein (MBP) to this Cry toxin. While the exact mechanism of the activity enhancement remains indefinite, it is probable that the enhancement is a result of increased solubility of the MBP-Cry8Hb fusion in the rootworm midgut. This hypothesis was examined using a synthetic Cry3 protein called IP3-1, which was not soluble at a neutral pH like Cry8Hb and marginally active to WCRW. When IP3-1 was fused to MBP, its anti-WCRW activity was enhanced 13-fold. To further test the hypothesis, DNA shuffling was performed on IP3-1 to increase the solubility without MBP. Screening of shuffled libraries found six new IP3 variants showing very high anti-WCRW activity without MBP. Sequence and 3D structure analysis of those highly active, shuffled IP3 variants revealed several charge-altering mutations such as Lys to Glu on the putative MBP-attaching side of the IP3 molecule. It is likely that those mutations make the protein acidic to substitute the functions of MBP including enhancing the solubility of IP3 at a neutral pH.


Author(s):  
David Bowen ◽  
Yong Yin ◽  
Stanislaw Flasinski ◽  
Catherine Chay ◽  
Gregory Bean ◽  
...  

This study describes three closely related proteins, cloned from Brevibacillus laterosporus strains, that are lethal upon feeding to Diabrotica virgifera virgifera LeConte, the western corn rootworm (WCR). Mpp75Aa1, Mpp75Aa2 and Mpp75Aa3 were toxic to WCR larvae when fed purified protein. Transgenic plants expressing each mMpp75Aa protein were protected from feeding damage and showed significant reduction in adult emergence from infested plants by both susceptible and Cry3Bb1 and Cry34Ab1/Cry35Ab1-resistant WCR. These results demonstrate that proteins from B. laterosporus are as efficacious as the well-known Bacillus thuringiensis (Bt) insecticidal proteins in controlling major insect pests such as WCR. The deployment of transgenic maize expressing mMpp75Aa along with other active molecules lacking cross-resistance have the potential to be a useful tool for control of WCR populations resistant to current Bt traits. IMPORTANCE Insects feeding on roots of crops can damage the plant roots resulting in yield loss due to poor water and nutrient uptake and plant lodging. In maize the western corn rootworm (WCR) can cause severe damage to the roots resulting in significant economic loss for farmers. Genetically modified (GM) expressing Bacillus thuringiensis (Bt) insect control proteins, has provided a solution for control of these pests. In recent years populations of WCR resistant to the Bt proteins in commercial GM maize have emerged. There is a need to develop new insecticidal traits for the control of WCR populations resistant to current commercial traits. New proteins with commercial level efficacy on WCR from sources other than Bt are becoming more critical. The Mpp75Aa proteins, from B. laterosporus, when expressed in maize, are efficacious against the resistant populations of WCR and have the potential to provide solutions for control of resistant WCR.


Sign in / Sign up

Export Citation Format

Share Document