scholarly journals Function of Heterologous Mycobacterium tuberculosis InhA, a Type 2 Fatty Acid Synthase Enzyme Involved in Extending C20 Fatty Acids to C60-to-C90 Mycolic Acids, during De Novo Lipoic Acid Synthesis in Saccharomyces cerevisiae

2008 ◽  
Vol 74 (16) ◽  
pp. 5078-5085 ◽  
Author(s):  
Aner Gurvitz ◽  
J. Kalervo Hiltunen ◽  
Alexander J. Kastaniotis

ABSTRACT We describe the physiological function of heterologously expressed Mycobacterium tuberculosis InhA during de novo lipoic acid synthesis in yeast (Saccharomyces cerevisiae) mitochondria. InhA, representing 2-trans-enoyl-acyl carrier protein reductase and the target for the front-line antituberculous drug isoniazid, is involved in the activity of dissociative type 2 fatty acid synthase (FASII) that extends associative type 1 fatty acid synthase (FASI)-derived C20 fatty acids to form C60-to-C90 mycolic acids. Mycolic acids are major constituents of the protective layer around the pathogen that contribute to virulence and resistance to certain antimicrobials. Unlike FASI, FASII is thought to be incapable of de novo biosynthesis of fatty acids. Here, the genes for InhA (Rv1484) and four similar proteins (Rv0927c, Rv3485c, Rv3530c, and Rv3559c) were expressed in S. cerevisiae etr1Δ cells lacking mitochondrial 2-trans-enoyl-thioester reductase activity. The phenotype of the yeast mutants includes the inability to produce sufficient levels of lipoic acid, form mitochondrial cytochromes, respire, or grow on nonfermentable carbon sources. Yeast etr1Δ cells expressing mitochondrial InhA were able to respire, grow on glycerol, and produce lipoic acid. Commensurate with a role in mitochondrial de novo fatty acid biosynthesis, InhA could accept in vivo much shorter acyl-thioesters (C4 to C8) than was previously thought (>C12). Moreover, InhA functioned in the absence of AcpM or protein-protein interactions with its native FASII partners KasA, KasB, FabD, and FabH. None of the four proteins similar to InhA complemented the yeast mutant phenotype. We discuss the implications of our findings with reference to lipoic acid synthesis in M. tuberculosis and the potential use of yeast FASII mutants for investigating the physiological function of drug-targeted pathogen enzymes involved in fatty acid biosynthesis.

Open Biology ◽  
2017 ◽  
Vol 7 (2) ◽  
pp. 160277 ◽  
Author(s):  
Matías Cabruja ◽  
Sonia Mondino ◽  
Yi Ting Tsai ◽  
Julia Lara ◽  
Hugo Gramajo ◽  
...  

Unlike most bacteria, mycobacteria rely on the multi-domain enzyme eukaryote-like fatty acid synthase I (FAS I) to make fatty acids de novo. These metabolites are precursors of the biosynthesis of most of the lipids present both in the complex mycobacteria cell wall and in the storage lipids inside the cell. In order to study the role of the type I FAS system in Mycobacterium lipid metabolism in vivo , we constructed a conditional mutant in the fas-acpS operon of Mycobacterium smegmatis and analysed in detail the impact of reduced de novo fatty acid biosynthesis on the global architecture of the cell envelope. As expected, the mutant exhibited growth defect in the non-permissive condition that correlated well with the lower expression of fas-acpS and the concomitant reduction of FAS I, confirming that FAS I is essential for survival. The reduction observed in FAS I provoked an accumulation of its substrates, acetyl-CoA and malonyl-CoA, and a strong reduction of C 12 to C 18 acyl-CoAs, but not of long-chain acyl-CoAs (C 19 to C 24 ). The most intriguing result was the ability of the mutant to keep synthesizing mycolic acids when fatty acid biosynthesis was impaired. A detailed comparative lipidomic analysis showed that although reduced FAS I levels had a strong impact on fatty acid and phospholipid biosynthesis, mycolic acids were still being synthesized in the mutant, although with a different relative species distribution. However, when triacylglycerol degradation was inhibited, mycolic acid biosynthesis was significantly reduced, suggesting that storage lipids could be an intracellular reservoir of fatty acids for the biosynthesis of complex lipids in mycobacteria. Understanding the interaction between FAS I and the metabolic pathways that rely on FAS I products is a key step to better understand how lipid homeostasis is regulated in this microorganism and how this regulation could play a role during infection in pathogenic mycobacteria.


1989 ◽  
Vol 257 (4) ◽  
pp. L195-L201 ◽  
Author(s):  
S. A. Rooney

Fatty acids are integral components of glycerolipids and hence of the phosphatidylcholine-rich pulmonary surfactant. There is ample evidence that the lung is able to synthesize fatty acids de novo. Toward the end of gestation as the fetus prepares for life outside the uterus, there is a surge in phosphatidylcholine synthesis. At the same time there is an increase in de novo fatty acid biosynthesis as well as in the activity of fatty acid synthase, the enzyme that catalyzes the final steps in fatty acid synthesis. Glucocorticoids have long been known to accelerate phosphatidylcholine biosynthesis in the fetal lung and they have also been found to stimulate fatty acid biosynthesis and fatty acid synthase activity. In fact, fatty acid synthase is the first, and so far the only, enzyme involved in lipid biosynthesis to be clearly identified as glucocorticoid inducible in fetal lung. De novo fatty acid biosynthesis may have two important roles relating to surfactant production during late fetal life. In addition to providing fatty acids for incorporation into surfactant phospholipids, recent data suggest that fatty acids may also directly regulate phosphatidylcholine biosynthesis by activation of choline-phosphate cytidylyltransferase, an enzyme catalyzing a rate-limiting step in its biosynthetic pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Raquel Martins-Noguerol ◽  
Sébastien Acket ◽  
M. Adrián Troncoso-Ponce ◽  
Rafael Garcés ◽  
Brigitte Thomasset ◽  
...  

Lipoic acid (LA, 6,8-dithiooctanoic acid) is a sulfur containing coenzyme essential for the activity of several key enzymes involved in oxidative and single carbon metabolism in most bacteria and eukaryotes. LA is synthetized by the concerted activity of the octanoyltransferase (LIP2, EC 2.3.1.181) and lipoyl synthase (LIP1, EC 2.8.1.8) enzymes. In plants, pyruvate dehydrogenase (PDH), 2-oxoglutarate dehydrogenase or glycine decarboxylase are essential complexes that need to be lipoylated. These lipoylated enzymes and complexes are located in the mitochondria, while PDH is also present in plastids where it provides acetyl-CoA for de novo fatty acid biosynthesis. As such, lipoylation of PDH could regulate fatty acid synthesis in both these organelles. In the present work, the sunflower LIP1 and LIP2 genes (HaLIP1m and HaLIP2m) were isolated sequenced, cloned, and characterized, evaluating their putative mitochondrial location. The expression of these genes was studied in different tissues and protein docking was modeled. The genes were also expressed in Escherichia coli and Arabidopsis thaliana, where their impact on fatty acid and glycerolipid composition was assessed. Lipidomic studies in Arabidopsis revealed lipid remodeling in lines overexpressing these enzymes and the involvement of both sunflower proteins in the phenotypes observed is discussed in the light of the results obtained.


Microbiology ◽  
2009 ◽  
Vol 155 (8) ◽  
pp. 2664-2675 ◽  
Author(s):  
Daniel G. Kurth ◽  
Gabriela M. Gago ◽  
Agustina de la Iglesia ◽  
Bernardo Bazet Lyonnet ◽  
Ting-Wan Lin ◽  
...  

Mycolic acids are essential for the survival, virulence and antibiotic resistance of the human pathogen Mycobacterium tuberculosis. Inhibitors of mycolic acid biosynthesis, such as isoniazid and ethionamide, have been used as efficient drugs for the treatment of tuberculosis. However, the increase in cases of multidrug-resistant tuberculosis has prompted a search for new targets and agents that could also affect synthesis of mycolic acids. In mycobacteria, the acyl-CoA carboxylases (ACCases) provide the building blocks for de novo fatty acid biosynthesis by fatty acid synthase (FAS) I and for the elongation of FAS I products by the FAS II complex to produce meromycolic acids. By generating a conditional mutant in the accD6 gene of Mycobacterium smegmatis, we demonstrated that AccD6 is the essential carboxyltransferase component of the ACCase 6 enzyme complex implicated in the biosynthesis of malonyl-CoA, the substrate of the two FAS enzymes of Mycobacterium species. Based on the conserved structure of the AccD5 and AccD6 active sites we screened several inhibitors of AccD5 as potential inhibitors of AccD6 and found that the ligand NCI-172033 was capable of inhibiting AccD6 with an IC50 of 8 μM. The compound showed bactericidal activity against several pathogenic Mycobacterium species by producing a strong inhibition of both fatty acid and mycolic acid biosynthesis at minimal inhibitory concentrations. Overexpression of accD6 in M. smegmatis conferred resistance to NCI-172033, confirming AccD6 as the main target of the inhibitor. These results define the biological role of a key ACCase in the biosynthesis of membrane and cell envelope fatty acids, and provide a new target, AccD6, for rational development of novel anti-mycobacterial drugs.


1963 ◽  
Vol 41 (1) ◽  
pp. 1267-1274
Author(s):  
Peter F. Hall ◽  
Edward E. Nishizawa ◽  
Kristen B. Eik-Nes

The fatty acids palmitic, palmitoleic, stearic, and oleic have been isolated from rabbit testis and evidence for the synthesis of palmitic and stearic acids de novo from acetate-1-C14is presented. ICSH did not produce demonstrable stimulation of the synthesis of these acids in vitro although the hormone stimulated the production of testosterone-C14by the same tissue. Adrenal tissue was shown to contain palmitic, stearic, and oleic acids, and ACTH did not increase the incorporation of acetate-1-C14into a fatty acid fraction extracted following incubation of adrenal tissue in the presence of this substrate. Fatty acid biosynthesis, therefore, is probably not influenced by the mechanisms by which tropic hormones increase steroid formation.


1990 ◽  
Vol 45 (5) ◽  
pp. 518-520 ◽  
Author(s):  
Manfred Focke ◽  
Andrea Feld ◽  
Hartmut K. Lichtenthaler

Thiolactomycin was shown to be a potent inhibitor of de novo fatty acid biosynthesis in intact isolated chloroplasts (measured as [14C]acetate incorporation into total fatty acids). In our attempt to further localize the inhibition site we confirmed the inhibition with a fatty acid synthetase preparation, measuring the incorporation of [14C]malonyl-CoA into total fatty acids. From the two proposed enzymic targets of the fatty acid synthetase by thiolactomycin we could exclude the acetyl-CoA: ACP transacetylase. It appears that the inhibition by thiolactomycin occurs on the level of the condensing enzymes, i.e. the 3-oxoacyl-ACP synthases. We also demonstrated that the two starting enzymes of de novo fatty acid biosynthesis, the acetyl-CoA synthetase and the acetyl-CoA carboxylase, are not affected by thiolactomycin.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Regiane Kawasaki ◽  
Rafael A. Baraúna ◽  
Artur Silva ◽  
Marta S. P. Carepo ◽  
Rui Oliveira ◽  
...  

Exiguobacterium antarcticumB7 is extremophile Gram-positive bacteria able to survive in cold environments. A key factor to understanding cold adaptation processes is related to the modification of fatty acids composing the cell membranes of psychrotrophic bacteria. In our study we show thein silicoreconstruction of the fatty acid biosynthesis pathway ofE. antarcticumB7. To build the stoichiometric model, a semiautomatic procedure was applied, which integrates genome information using KEGG and RAST/SEED. Constraint-based methods, namely, Flux Balance Analysis (FBA) and elementary modes (EM), were applied. FBA was implemented in the sense of hexadecenoic acid production maximization. To evaluate the influence of the gene expression in the fluxome analysis, FBA was also calculated using thelog2⁡FCvalues obtained in the transcriptome analysis at 0°C and 37°C. The fatty acid biosynthesis pathway showed a total of 13 elementary flux modes, four of which showed routes for the production of hexadecenoic acid. The reconstructed pathway demonstrated the capacity ofE. antarcticumB7 tode novoproduce fatty acid molecules. Under the influence of the transcriptome, the fluxome was altered, promoting the production of short-chain fatty acids. The calculated models contribute to better understanding of the bacterial adaptation at cold environments.


1991 ◽  
Vol 260 (6) ◽  
pp. L577-L585 ◽  
Author(s):  
J. Rami ◽  
S. M. Sasic ◽  
S. A. Rooney

Silica instillation causes lung surfactant accumulation as well as hyperplasia and hypertrophy of type II pneumocytes. Two populations of type II cells can be isolated from silica-treated rats: type IIA, which are similar to type II cells from normal animals and type IIB, which are larger and have a higher rate of phosphatidylcholine biosynthesis. We have compared fatty acid biosynthesis and phosphatidylcholine secretion in types IIA and IIB cells and in type II cells from control rats. The cells were isolated by elastase digestion and panning on immunoglobulin G-coated plates and fractionated into types IIA and IIB by centrifugal elutriation. Type IIB cells contained more phospholipid and had an enhanced rate of [3H]choline incorporation into phosphatidylcholine. The activity of choline-phosphate cytidylyltransferase was elevated in the type IIB cells and the extent of the increase was diminished when phosphatidylglycerol was included in the assay, suggesting that the enhanced activity was due to enzyme activation rather than protein synthesis. The basal rate of phosphatidylcholine secretion was the same in all three groups as was the response to a variety of secretagogues. Incorporation of [3H]acetate into fatty acids was elevated in type IIB cells and the activity of fatty acid synthase was eightfold greater than in control cells. These data show that de novo fatty acid biosynthesis is increased in hypertrophic type II cells and that surfactant secretion is not elevated.


2002 ◽  
Vol 30 (6) ◽  
pp. 1050-1055 ◽  
Author(s):  
H. Marrakchi ◽  
Y.-M. Zhang ◽  
C. O. Rock

Fatty acid biosynthesis is catalysed in most bacteria by a group of highly conserved proteins known as the Type II fatty acid synthase (FAS) system. The Type II system organization is distinct from its mammalian counterpart and offers several unique sites for selective inhibition by antibacterial agents. There has been remarkable progress in the understanding of the genetics, biochemistry and regulation of Type II FASs. One important advance is the discovery of the interaction between the fatty acid degradation regulator, FadR, and the fatty acid biosynthesis regulator, FabR, in the transcriptional control of unsaturated fatty acid synthesis in Escherichia coli. The availability of genomic sequences and high-resolution protein crystal structures has expanded our understanding of Type II FASs beyond the E. coli model system to a number of pathogens. The molecular diversity among the pathway enzymes is illustrated by the discovery of a new type of enoyl-reductase in Streptococcus pneumoniae [enoyl-acyl carrier protein (ACP) reductase II, FabK], the presence of two enoyl-reductases in Bacillus subtilis (enoyl-ACP reductases I and III, FabI and FabL), and the use of a new mechanism for unsaturated fatty acid formation in S. pneumoniae (trans-2-cis-3-enoyl-ACP isomerase, FabM). The solution structure of ACP from Mycobacterium tuberculosis revealed features common to all ACPs, but its extended C-terminal domain may reflect a specific interaction with very-long-chain intermediates.


1987 ◽  
Vol 42 (11-12) ◽  
pp. 1361-1363 ◽  
Author(s):  
Manfred Focke ◽  
Hartmut K. Lichtenthaler

The effect of the three cyclohexane-1,3-dione derivatives cycloxydim, sethoxydim and clethodim on the incorpora­tion of 14C-labelled acetate, malonate. acctyl-CoA or malonyl-CoA into fatty acids was studied in an enzyme preparation isolated from barley chloroplasts (Hordeum vulgare L. var. “Alexis”). The herbicides cycloxydim, clethodim and sethoxydim block the de novo fatty acid biosynthesis from [2-14C]acetatc and [1-14C]acetyl-CoA, whereas that of [2-14C]malonatc and [2-14C)malonyl-CoA is not affected. The data indicate that the mode of action of the cyclohexane-1,3-dione derivatives in the sensitive bar­ley plant consists in the inhibition of de novo fatty acid biosynthesis by blocking the acetyl-CoA carboxylase (EC 6.4.1.2.).


Sign in / Sign up

Export Citation Format

Share Document