glycerolipid composition
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Raquel Martins-Noguerol ◽  
Sébastien Acket ◽  
M. Adrián Troncoso-Ponce ◽  
Rafael Garcés ◽  
Brigitte Thomasset ◽  
...  

Lipoic acid (LA, 6,8-dithiooctanoic acid) is a sulfur containing coenzyme essential for the activity of several key enzymes involved in oxidative and single carbon metabolism in most bacteria and eukaryotes. LA is synthetized by the concerted activity of the octanoyltransferase (LIP2, EC 2.3.1.181) and lipoyl synthase (LIP1, EC 2.8.1.8) enzymes. In plants, pyruvate dehydrogenase (PDH), 2-oxoglutarate dehydrogenase or glycine decarboxylase are essential complexes that need to be lipoylated. These lipoylated enzymes and complexes are located in the mitochondria, while PDH is also present in plastids where it provides acetyl-CoA for de novo fatty acid biosynthesis. As such, lipoylation of PDH could regulate fatty acid synthesis in both these organelles. In the present work, the sunflower LIP1 and LIP2 genes (HaLIP1m and HaLIP2m) were isolated sequenced, cloned, and characterized, evaluating their putative mitochondrial location. The expression of these genes was studied in different tissues and protein docking was modeled. The genes were also expressed in Escherichia coli and Arabidopsis thaliana, where their impact on fatty acid and glycerolipid composition was assessed. Lipidomic studies in Arabidopsis revealed lipid remodeling in lines overexpressing these enzymes and the involvement of both sunflower proteins in the phenotypes observed is discussed in the light of the results obtained.


2020 ◽  
Vol 295 (47) ◽  
pp. 15974-15987 ◽  
Author(s):  
Inga Rimkute ◽  
Konrad Thorsteinsson ◽  
Marcus Henricsson ◽  
Victoria R. Tenge ◽  
Xiaoming Yu ◽  
...  

The molecular mechanisms behind infection and propagation of human restricted pathogens such as human norovirus (HuNoV) have defied interrogation because they were previously unculturable. However, human intestinal enteroids (HIEs) have emerged to offer unique ex vivo models for targeted studies of intestinal biology, including inflammatory and infectious diseases. Carbohydrate-dependent histo-blood group antigens (HBGAs) are known to be critical for clinical infection. To explore whether HBGAs of glycosphingolipids contribute to HuNoV infection, we obtained HIE cultures established from stem cells isolated from jejunal biopsies of six individuals with different ABO, Lewis, and secretor genotypes. We analyzed their glycerolipid and sphingolipid compositions and quantified interaction kinetics and the affinity of HuNoV virus-like particles (VLPs) to lipid vesicles produced from the individual HIE-lipid extracts. All HIEs had a similar lipid and glycerolipid composition. Sphingolipids included HBGA-related type 1 chain glycosphingolipids (GSLs), with HBGA epitopes corresponding to the geno- and phenotypes of the different HIEs. As revealed by single-particle interaction studies of Sydney GII.4 VLPs with glycosphingolipid-containing HIE membranes, both binding kinetics and affinities explain the patterns of susceptibility toward GII.4 infection for individual HIEs. This is the first time norovirus VLPs have been shown to interact specifically with secretor gene–dependent GSLs embedded in lipid membranes of HIEs that propagate GII.4 HuNoV ex vivo, highlighting the potential of HIEs for advanced future studies of intestinal glycobiology and host-pathogen interactions.


2020 ◽  
Vol 477 (13) ◽  
pp. 2543-2559
Author(s):  
Janka Widzgowski ◽  
Alexander Vogel ◽  
Lena Altrogge ◽  
Julia Pfaff ◽  
Heiko Schoof ◽  
...  

Algae have evolved several mechanisms to adjust to changing environmental conditions. To separate from their surroundings, algal cell membranes form a hydrophobic barrier that is critical for life. Thus, it is important to maintain or adjust the physical and biochemical properties of cell membranes which are exposed to environmental factors. Especially glycerolipids of thylakoid membranes, the site of photosynthesis and photoprotection within chloroplasts, are affected by different light conditions. Since little is known about membrane lipid remodeling upon different light treatments, we examined light induced alterations in the glycerolipid composition of the two Chlorella species, C. vulgaris and C. sorokiniana, which differ strongly in their ability to cope with different light intensities. Lipidomic analysis and isotopic labeling experiments revealed differences in the composition of their galactolipid species, although both species likely utilize galactolipid precursors originated from the endoplasmic reticulum. However, in silico research of de novo sequenced genomes and ortholog mapping of proteins putatively involved in lipid metabolism showed largely conserved lipid biosynthesis pathways suggesting species specific lipid remodeling mechanisms, which possibly have an impact on the response to different light conditions.


Cosmetics ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 70 ◽  
Author(s):  
Diana Penagos-Calvete ◽  
Valeria Duque ◽  
Claudia Marimon ◽  
Diana M. Parra ◽  
Sandra K. Restrepo-Arango ◽  
...  

Sacha inchi oil is a premier raw material with highly nutritional and functional features for the foodstuff, pharmaceutical, beauty, and personal care industries. One of the most important facts about this oil is the huge chemical content of unsaturated and polyunsaturated fatty acids. However, the current available information on the characterization of the triglyceride composition and the advance physicochemical parameters relevant to emulsion development is limited. Therefore, this research focused on providing a detailed description of the lipid composition using high-resolution tandem mass spectrometry and thorough physicochemical characterization to find the value of the required hydrophilic–lipophilic balance (HLB). For this, a study in the interfacial tension was evaluated, followed by the assessment of different parameters such as creaming index, droplet size, viscosity, zeta potential, pH, and electrical conductivity for a series emulsified at thermal stress condition. The results show that fatty acids are arranged into glycerolipids and the required HLB to achieve the maximum physical stability is around 8.


Marine Drugs ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 96 ◽  
Author(s):  
Masaki Honda ◽  
Takashi Ishimaru ◽  
Yutaka Itabashi ◽  
Mikhail Vyssotski

The red macroalga Agarophyton chilensis is a well-known producer of eicosanoids such as hydroxyeicosatetraenoic acids, but the alga produces almost no prostaglandins, unlike the closely related A. vermiculophyllum. This indicates that the related two algae would have different enzyme systems or substrate composition. To carry out more in-depth discussions on the metabolic pathway of eicosanoids between the two algae, we investigated the characteristics of glycerolipids, which are the substrates of eicosanoids production, of A. chilensis and compared them to the reported values of A. vermiculophyllum. In A. chilensis, monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG), and phosphatidylcholine (PC) were the major lipid classes and accounted for 44.4% of the total lipid extract. The predominant fatty acids were arachidonic acid (20:4n-6), an eicosanoids precursor, and palmitic acid (16:0). The 20:4n-6 content was extremely high in MGDG and PC (>70%), and the 16:0 content was extremely high in DGDG and SQDG (>40%). A chiral-phase HPLC analysis showed that fatty acids were esterified at the sn-1 and sn-2 positions of those lipids. The glycerolipid molecular species were determined by reversed-phase HPLC–ESI–MS analysis. The main glycerolipid molecular species were 20:4n-6/20:4n-6 (sn-1/sn-2) for MGDG (63.8%) and PC (48.2%), 20:4n-6/16:0 for DGDG (71.1%) and SQDG (29.4%). These lipid characteristics of A. chilensis were almost the same as those of A. vermiculophyllum. Hence, the differences of the eicosanoids producing ability between the two algae would not be due to the difference of substrate composition but the difference of enzyme system.


2019 ◽  
Vol 158 ◽  
pp. 150-160 ◽  
Author(s):  
Micaela Peppino Margutti ◽  
Matias Reyna ◽  
Ana Carolina Vilchez ◽  
Ana Laura Villasuso

2016 ◽  
Vol 7 ◽  
Author(s):  
Dawid Perlikowski ◽  
Sylwia Kierszniowska ◽  
Aneta Sawikowska ◽  
Paweł Krajewski ◽  
Marcin Rapacz ◽  
...  

2013 ◽  
Vol 8 (5) ◽  
pp. e24118 ◽  
Author(s):  
Nabila Djafi ◽  
Lydie Humbert ◽  
Dominique Rainteau ◽  
Catherine Cantrel ◽  
Alain Zachowski ◽  
...  

2007 ◽  
Vol 109 (6) ◽  
pp. 591-599 ◽  
Author(s):  
Joaquín J. Salas ◽  
Antonio J. Moreno-Pérez ◽  
Enrique Martínez-Force ◽  
Rafael Garcés

Sign in / Sign up

Export Citation Format

Share Document