scholarly journals Multispecies populations of methanotrophic Methyloprofundus and cultivation of a likely dominant species from the Iheya North deep-sea hydrothermal field

Author(s):  
Hisako Hirayama ◽  
Yoshihiro Takaki ◽  
Mariko Abe ◽  
Hiroyuki Imachi ◽  
Tetsuro Ikuta ◽  
...  

The Methyloprofundus clade is represented by uncultivated methanotrophic bacterial endosymbionts of deep-sea bathymodiolin mussels, but only a single free-living species has been cultivated to date. This study reveals the existence of free-living Methyloprofundus variants in the Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough. A clade-targeted amplicon analysis of the particulate methane monooxygenase gene ( pmoA ) detected 647 amplicon sequence variants (ASVs) of the Methyloprofundus clade in microbial communities newly formed in in situ colonization systems. Such systems were deployed at colonies of bathymodiolin mussels and a galatheoid crab. These ASVs were classified into 161 species-like groups. The proportion of the species-like groups representing endosymbionts of mussels was unexpectedly low. A methanotrophic bacterium designated as INp10, a likely dominant species in the Methyloprofundus population in this field, was enriched in biofilm formed in a methane-fed cultivation system operated at 10°C. Genomic characterization with the gene transcription dataset of INp10 from biofilm suggested traits advantageous to niche competition in environments, such as mobility, chemotaxis, biofilm formation, offensive and defensive systems, and hypoxia tolerance. The notable metabolic traits INp10 shares with some Methyloprofundus members are the use of lanthanide-dependent XoxF as the sole methanol dehydrogenase due to the absence of the canonical MxaFI, the glycolytic pathway using fructose-6-phosphate aldolase instead of fructose-1,6-bisphosphate aldolase, and the potential to perform partial denitrification from nitrate under oxygen-limited conditions. These findings help better understand ecological strategies of this possibly widespread marine-specific methanotrophic clade. Importance The Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough is characterized by abundant methane derived from organic-rich sediments and diverse chemosynthetic animal species, including those harboring methanotrophic bacterial symbionts such as bathymodiolin mussels Bathymodiolus japonicus and “ Bathymodiolus ” platifrons and a galatheoid crab Shinkaia crosnieri . Symbiotic methanotrophs have attracted significant attention, yet free-living methanotrophs in this environment have not been studied in detail. We focused on the free-living Methyloprofundus spp. that thrive in this hydrothermal field and identified an unexpectedly large number of species-like groups in this clade. Moreover, we enriched and characterized a methanotroph whose genome sequence indicated it corresponds to a new species in the genus Methyloprofundus . This species might be a dominant member of the indigenous Methyloprofundus population. New information on free-living Methyloprofundus spp. suggests that the hydrothermal field is a promising locale to investigate the adaptive capacity and associated genetic diversity of Methyloprofundus .

Zootaxa ◽  
2017 ◽  
Vol 4363 (4) ◽  
pp. 592
Author(s):  
CHONG CHEN ◽  
HIROMI KAYAMA WATANABE ◽  
JUAN FRANCISCO ARAYA

The molluscan diversity of deep-sea chemosynthetic ecosystems in Japan has been in general well documented with about 80 described species, of which over half are gastropods (Sasaki et al. 2005; Fujikura et al. 2012; Sasaki et al. 2016). Recently, however, a number of novel hydrothermal vent sites were discovered in the area using multibeam echo-sounding (Nakamura et al. 2015), providing opportunities for new discoveries. As a part of ongoing studies documenting the biodiversity of such sites, we present the first record of Columbellidae from hydrothermal vents, with a new species recovered from Natsu and Aki sites, in the Iheya North hydrothermal field (for map and background on the vent field see Nakamura et al. 2015). 


2007 ◽  
Vol 57 (3) ◽  
pp. 467-471 ◽  
Author(s):  
Takuro Nunoura ◽  
Hanako Oida ◽  
Masayuki Miyazaki ◽  
Yohey Suzuki ◽  
Ken Takai ◽  
...  

A novel thermophilic and sulfur-reducing heterotrophic bacterium, strain TFS10-5T, was isolated from a deep-sea hydrothermal field in Yonaguni Knoll IV, Southern Okinawa Trough. Cells of strain TFS10-5T were motile rods, 1.5–5 μm in length and 0.5–0.8 μm in width. Strain TFS10-5T was an obligately anaerobic heterotroph and sulfur-reduction stimulated growth. Growth was observed between 30 and 70 °C (optimum at 55–60 °C), pH 5.0–7.4 (optimum at pH 5.5–5.8), 1.0–5.5 NaCl % (optimum at 3.0–3.5 %). The fatty acid content was C16 : 0 (71.0 %), C16 : 1 (6.0 %), C18 : 0 (21.4 %) and C18 : 1 (1.6 %). The G+C content of the genomic DNA was 28 mol%. 16S rRNA gene sequence analysis indicated that strain TFS10-5T belongs to the genus Marinitoga. Based on the physiological and phylogenetic features of the new isolate, strain TFS10-5T represents a novel species in the genus Marinitoga for which the name Marinitoga okinawensis sp. nov. is proposed. The type strain is TFS10-5T (=JCM 13303T=DSM 17373T).


2019 ◽  
Vol 14 (3) ◽  
pp. 150-160 ◽  
Author(s):  
Seiji Takeuchi ◽  
Ryota Nakajima ◽  
Takehisa Yamakita ◽  
Roxana Hoque ◽  
Tetsuya Miwa ◽  
...  

2009 ◽  
Vol 76 (4) ◽  
pp. 1198-1211 ◽  
Author(s):  
Takuro Nunoura ◽  
Hanako Oida ◽  
Miwako Nakaseama ◽  
Ayako Kosaka ◽  
Satoru B. Ohkubo ◽  
...  

ABSTRACT A variety of archaeal lineages have been identified using culture-independent molecular phylogenetic surveys of microbial habitats occurring in deep-sea hydrothermal environments such as chimney structures, sediments, vent emissions, and chemosynthetic macrofauna. With the exception of a few taxa, most of these archaea have not yet been cultivated, and their physiological and metabolic traits remain unclear. In this study, phylogenetic diversity and distribution profiles of the archaeal genes encoding small subunit (SSU) rRNA, methyl coenzyme A (CoA) reductase subunit A, and the ammonia monooxygenase large subunit were characterized in hydrothermally influenced sediments at the Yonaguni Knoll IV hydrothermal field in the Southern Okinawa Trough. Sediment cores were collected at distances of 0.5, 2, or 5 m from a vent emission (90°C). A moderate temperature gradient extends both horizontally and vertically (5 to 69°C), indicating the existence of moderate mixing between the hydrothermal fluid and the ambient sediment pore water. The mixing of reductive hot hydrothermal fluid and cold ambient sediment pore water establishes a wide spectrum of physical and chemical conditions in the microbial habitats that were investigated. Under these different physico-chemical conditions, variability in archaeal phylotype composition was observed. The relationship between the physical and chemical parameters and the archaeal phylotype composition provides important insight into the ecophysiological requirements of uncultivated archaeal lineages in deep-sea hydrothermal vent environments, giving clues for approximating culture conditions to be used in future culturing efforts.


2007 ◽  
Vol 57 (10) ◽  
pp. 2360-2364 ◽  
Author(s):  
Takuro Nunoura ◽  
Hanako Oida ◽  
Masayuki Miyazaki ◽  
Yohey Suzuki ◽  
Ken Takai ◽  
...  

A novel thermophilic and heterotrophic sulfate-reducing bacterium, strain TFISO9T, was isolated from a deep-sea hydrothermal field at the Yonaguni Knoll IV in the Southern Okinawa Trough. The cells were motile rods 2.5–5.0 μm in length and 0.6–0.9 μm in width. Strain TFISO9T was an obligate heterotroph and reduced sulfate. It grew between 35 and 60 °C (optimum 50 °C), at pH 5.4–7.9 (optimum pH 5.9–6.4) and with 1.5–4.5 % NaCl (optimum 2.5 %). The fatty acid composition was C16 : 0 (61.5 %) and 12Me16 : 0 (38.5 %). The DNA G+C content was 34.9 mol%. The 16S rRNA gene sequence analysis indicated that strain TFISO9T belonged to the genus Desulfothermus. Based on physiological and phylogenetic characteristics, strain TFISO9T represents a novel species for which the name Desulfothermus okinawensis sp. nov. is proposed. The type strain is TFISO9T (=JCM 13304T=DSM 17375T).


2021 ◽  
Vol 167 ◽  
pp. 112277
Author(s):  
Xin Huang ◽  
Chao Huang ◽  
Yali Qi ◽  
Xiaoyuan Wang ◽  
Hansheng Cao

2021 ◽  
Vol 7 (11) ◽  
pp. eabe4164
Author(s):  
Grant L. Norbury ◽  
Catherine J. Price ◽  
M. Cecilia Latham ◽  
Samantha J. Brown ◽  
A. David M. Latham ◽  
...  

Efficient decision-making integrates previous experience with new information. Tactical use of misinformation can alter choice in humans. Whether misinformation affects decision-making in other free-living species, including problem species, is unknown. Here, we show that sensory misinformation tactics can reduce the impacts of predators on vulnerable bird populations as effectively as lethal control. We repeatedly exposed invasive mammalian predators to unprofitable bird odors for 5 weeks before native shorebirds arrived for nesting and for 8 weeks thereafter. Chick production increased 1.7-fold at odor-treated sites over 25 to 35 days, with doubled or tripled odds of successful hatching, resulting in a 127% increase in modeled population size in 25 years. We demonstrate that decision-making processes that respond to changes in information reliability are vulnerable to tactical manipulation by misinformation. Altering perceptions of prey availability offers an innovative, nonlethal approach to managing problem predators and improving conservation outcomes for threatened species.


Sign in / Sign up

Export Citation Format

Share Document