scholarly journals Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea

2017 ◽  
Vol 83 (18) ◽  
Author(s):  
Nikolas Duszenko ◽  
Nicole R. Buan

ABSTRACT Many, but not all, organisms use quinones to conserve energy in their electron transport chains. Fermentative bacteria and methane-producing archaea (methanogens) do not produce quinones but have devised other ways to generate ATP. Methanophenazine (MPh) is a unique membrane electron carrier found in Methanosarcina species that plays the same role as quinones in the electron transport chain. To extend the analogy between quinones and MPh, we compared the MPh pool sizes between two well-studied Methanosarcina species, Methanosarcina acetivorans C2A and Methanosarcina barkeri Fusaro, to the quinone pool size in the bacterium Escherichia coli. We found the quantity of MPh per cell increases as cultures transition from exponential growth to stationary phase, and absolute quantities of MPh were 3-fold higher in M. acetivorans than in M. barkeri. The concentration of MPh suggests the cell membrane of M. acetivorans, but not of M. barkeri, is electrically quantized as if it were a single conductive metal sheet and near optimal for rate of electron transport. Similarly, stationary (but not exponentially growing) E. coli cells also have electrically quantized membranes on the basis of quinone content. Consistent with our hypothesis, we demonstrated that the exogenous addition of phenazine increases the growth rate of M. barkeri three times that of M. acetivorans. Our work suggests electron flux through MPh is naturally higher in M. acetivorans than in M. barkeri and that hydrogen cycling is less efficient at conserving energy than scalar proton translocation using MPh. IMPORTANCE Can we grow more from less? The ability to optimize and manipulate metabolic efficiency in cells is the difference between commercially viable and nonviable renewable technologies. Much can be learned from methane-producing archaea (methanogens) which evolved a successful metabolic lifestyle under extreme thermodynamic constraints. Methanogens use highly efficient electron transport systems and supramolecular complexes to optimize electron and carbon flow to control biomass synthesis and the production of methane. Worldwide, methanogens are used to generate renewable methane for heat, electricity, and transportation. Our observations suggest Methanosarcina acetivorans, but not Methanosarcina barkeri, has electrically quantized membranes. Escherichia coli, a model facultative anaerobe, has optimal electron transport at the stationary phase but not during exponential growth. This study also suggests the metabolic efficiency of bacteria and archaea can be improved using exogenously supplied lipophilic electron carriers. The enhancement of methanogen electron transport through methanophenazine has the potential to increase renewable methane production at an industrial scale.

mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Yanyu Zhu ◽  
Mainak Mustafi ◽  
James C. Weisshaar

ABSTRACT In nature, bacteria must survive long periods of nutrient deprivation while maintaining the ability to recover and grow when conditions improve. This quiescent state is called stationary phase. The biochemistry of Escherichia coli in stationary phase is reasonably well understood. Much less is known about the biophysical state of the cytoplasm. Earlier studies of harvested nucleoids concluded that the stationary-phase nucleoid is “compacted” or “supercompacted,” and there are suggestions that the cytoplasm is “glass-like.” Nevertheless, stationary-phase bacteria support active transcription and translation. Here, we present results of a quantitative superresolution fluorescence study comparing the spatial distributions and diffusive properties of key components of the transcription-translation machinery in intact E. coli cells that were either maintained in 2-day stationary phase or undergoing moderately fast exponential growth. Stationary-phase cells are shorter and exhibit strong heterogeneity in cell length, nucleoid volume, and biopolymer diffusive properties. As in exponential growth, the nucleoid and ribosomes are strongly segregated. The chromosomal DNA is locally more rigid in stationary phase. The population-weighted average of diffusion coefficients estimated from mean-square displacement plots is 2-fold higher in stationary phase for both RNA polymerase (RNAP) and ribosomal species. The average DNA density is roughly twice as high as that in cells undergoing slow exponential growth. The data indicate that the stationary-phase nucleoid is permeable to RNAP and suggest that it is permeable to ribosomal subunits. There appears to be no need to postulate migration of actively transcribed genes to the nucleoid periphery. IMPORTANCE Bacteria in nature usually lack sufficient nutrients to enable growth and replication. Such starved bacteria adapt into a quiescent state known as the stationary phase. The chromosomal DNA is protected against oxidative damage, and ribosomes are stored in a dimeric structure impervious to digestion. Stationary-phase bacteria can recover and grow quickly when better nutrient conditions arise. The biochemistry of stationary-phase E. coli is reasonably well understood. Here, we present results from a study of the biophysical state of starved E. coli. Superresolution fluorescence microscopy enables high-resolution location and tracking of a DNA locus and of single copies of RNA polymerase (the transcription machine) and ribosomes (the translation machine) in intact E. coli cells maintained in stationary phase. Evidently, the chromosomal DNA remains sufficiently permeable to enable transcription and translation to occur. This description contrasts with the usual picture of a rigid stationary-phase cytoplasm with highly condensed DNA.


2017 ◽  
Vol 199 (12) ◽  
Author(s):  
Eric D. Peng ◽  
Shelley M. Payne

ABSTRACT Vibrio cholerae is the causative agent of the severe diarrheal disease cholera. V. cholerae thrives within the human host, where it replicates to high numbers, but it also persists within the aquatic environments of ocean and brackish water. To survive within these nutritionally diverse environments, V. cholerae must encode the necessary tools to acquire the essential nutrient iron in all forms it may encounter. A prior study of systems involved in iron transport in V. cholerae revealed the existence of vciB, which, while unable to directly transport iron, stimulates the transport of iron through ferrous (Fe2+) iron transport systems. We demonstrate here a role for VciB in V. cholerae in which VciB stimulates the reduction of Fe3+ to Fe2+, which can be subsequently transported into the cell with the ferrous iron transporter Feo. Iron reduction is independent of functional iron transport but is associated with the electron transport chain. Comparative analysis of VciB orthologs suggests a similar role for other proteins in the VciB family. Our data indicate that VciB is a dimer located in the inner membrane with three transmembrane segments and a large periplasmic loop. Directed mutagenesis of the protein reveals two highly conserved histidine residues required for function. Taken together, our results support a model whereby VciB reduces ferric iron using energy from the electron transport chain. IMPORTANCE Vibrio cholerae is a prolific human pathogen and environmental organism. The acquisition of essential nutrients such as iron is critical for replication, and V. cholerae encodes a number of mechanisms to use iron from diverse environments. Here, we describe the V. cholerae protein VciB that increases the reduction of oxidized ferric iron (Fe3+) to the ferrous form (Fe2+), thus promoting iron acquisition through ferrous iron transporters. Analysis of VciB orthologs in Burkholderia and Aeromonas spp. suggest that they have a similar activity, allowing a functional assignment for this previously uncharacterized protein family. This study builds upon our understanding of proteins known to mediate iron reduction in bacteria.


1975 ◽  
Vol 152 (3) ◽  
pp. 537-546 ◽  
Author(s):  
R K Poole ◽  
B A Haddock

Growth of Escherichia coli K12 in a chemostat was limited by sulphate concentrations lower than 300 muM. The synthesis of extracellular polysaccharide and a change in morphology accompanied sulphate-limited growth. Growth yields with respect to the amount of glycerol or oxygen consumed were sixfold and twofold lower respectively under these conditions than when growth was limited by glycerol. Sulphate-limited cells lacked the proton-translocating oxidoreduction segment of the electron-transport chain between NADH and the cytochromes, and particles prepared from these cells lacked the energy-dependent reduction of NAD+ by succinate, DL-α-glycerophosphate or D-lactate, suggesting the loss of site-I phosphorylation. Glycerol-limited cells contained cytochrome b556, b562 and o, ubiquinone and low concentrations of menaquinone. Sulphate limitation resulted in the additional synthesis of cytochromes d, a1, b558 and c550; the amount of ubiquinone was decreased and menaquinone was barely detectable. Non-haem iron and acid-labile sulphide concentrations were twofold lower in electron-transport particles prepared from sulphate-limited cells. Recovery of site-I phosphorylation could not be demonstrated after incubating sulphate-limited cells with or without glycerol, in either the absence or presence of added sulphate. The loss of site-I phosphorylation in sulphate-limited cells is discussed with reference to the accompanying alterations in cytochrome composition of such cells. Schemes are proposed for the functional organization of the respiratory chains of E. coli grown under conditions of glycerol or sulphate limitation.


1968 ◽  
Vol 14 (6) ◽  
pp. 661-666 ◽  
Author(s):  
G. J. Leahy ◽  
D. J Currie ◽  
H. L. Holmes ◽  
J. R. Maltman

Growth-inhibitory activities of some or all of 98 1,4-naphthoquinones and 16 related compounds on Escherichia coli and two strains of Staphylococcus aureus were determined alone or in combination. These values, when plotted against their polarographic half-wave potentials and those of their C2-n-butylthio analogs support the hypothesis that these compounds, or the products resulting from their reaction with a protein nucleophile, function by short-circuiting one or other of the quinones present in the electron-transport chain.


Sign in / Sign up

Export Citation Format

Share Document