scholarly journals Cooccurring Gentiana verna and Gentiana acaulis and Their Neighboring Plants in Two Swiss Upper Montane Meadows Harbor Distinct Arbuscular Mycorrhizal Fungal Communities

2007 ◽  
Vol 73 (17) ◽  
pp. 5426-5434 ◽  
Author(s):  
Zuzana Sýkorová ◽  
Andres Wiemken ◽  
Dirk Redecker

ABSTRACT The community composition of arbuscular mycorrhizal fungi (AMF) was analyzed in roots of Gentiana verna, Gentiana acaulis, and accompanying plant species from two species-rich Swiss alpine meadows located in the same area. The aim of the study was to elucidate the impact of host preference or host specificity on the AMF community in the roots. The roots were analyzed by nested PCR, restriction fragment length polymorphism screening, and sequencing of ribosomal DNA small-subunit and internal transcribed spacer regions. The AMF sequences were analyzed phylogenetically and used to define monophyletic sequence types. The AMF community composition was strongly influenced by the host plant species, but compositions did not significantly differ between the two sites. Detailed analyses of the two cooccurring gentian species G. verna and G. acaulis, as well as of neighboring Trifolium spp., revealed that their AMF communities differed significantly. All three host plant taxa harbored AMF communities comprising multiple phylotypes from different fungal lineages. A frequent fungal phylotype from Glomus group B was almost exclusively found in Trifolium spp., suggesting some degree of host preference for this fungus in this habitat. In conclusion, the results indicate that within a relatively small area with similar soil and climatic conditions, the host plant species can have a major influence on the AMF communities within the roots. No evidence was found for a narrowing of the mycosymbiont spectrum in the two green gentians, in contrast to previous findings with their achlorophyllous relatives.

2004 ◽  
Vol 70 (10) ◽  
pp. 6240-6246 ◽  
Author(s):  
Tanja R. Scheublin ◽  
Karyn P. Ridgway ◽  
J. Peter W. Young ◽  
Marcel G. A. van der Heijden

ABSTRACT Legumes are an important plant functional group since they can form a tripartite symbiosis with nitrogen-fixing Rhizobium bacteria and phosphorus-acquiring arbuscular mycorrhizal fungi (AMF). However, not much is known about AMF community composition in legumes and their root nodules. In this study, we analyzed the AMF community composition in the roots of three nonlegumes and in the roots and root nodules of three legumes growing in a natural dune grassland. We amplified a portion of the small-subunit ribosomal DNA and analyzed it by using restriction fragment length polymorphism and direct sequencing. We found differences in AMF communities between legumes and nonlegumes and between legume roots and root nodules. Different plant species also contained different AMF communities, with different AMF diversity. One AMF sequence type was much more abundant in legumes than in nonlegumes (39 and 13%, respectively). Root nodules contained characteristic AMF communities that were different from those in legume roots, even though the communities were similar in nodules from different legume species. One AMF sequence type was found almost exclusively in root nodules. Legumes and root nodules have relatively high nitrogen concentrations and high phosphorus demands. Accordingly, the presence of legume- and nodule-related AMF can be explained by the specific nutritional requirements of legumes or by host-specific interactions among legumes, root nodules, and AMF. In summary, we found that AMF communities vary between plant functional groups (legumes and nonlegumes), between plant species, and between parts of a root system (roots and root nodules).


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jing Zhang ◽  
Fang Wang ◽  
Rongxiao Che ◽  
Ping Wang ◽  
Hanke Liu ◽  
...  

Abstract Tibetan Plateau is one of the largest and most unique habitats for organisms including arbuscular mycorrhizal fungi (AMF). However, it remains unclear how AMF communities respond to key environmental changes in this harsh environment. To test if precipitation could be a driving force in shaping AMF community structures at regional scale, we examined AMF communities associated with dominant plant species along a precipitation gradient in Tibetan alpine steppe. Rhizosphere soils were collected from five sites with annual precipitation decreasing from 400 to 50 mm. A total of 31 AMF operational taxonomic units (OTUs) were identified. AMF community composition varied significantly among sites, whereas AMF community composition did not vary among plant species. Path analysis revealed that precipitation directly affected AMF hyphal length density, and indirectly influenced AMF species richness likely through the mediation of plant coverage. Our results suggested that water availability could drive the changes of AMF communities at regional scale. Given the important roles AMF could play in the dynamics of plant communities, exploring the changes of AMF communities along key environmental gradients would help us better predict the ecosystem level responses of the Tibetan vegetation to future climate change.


2021 ◽  
Author(s):  
Zhouying Xu ◽  
Yichao Lv ◽  
Yinghe Jiang ◽  
Xiaodong Luo ◽  
Xuelin Gui ◽  
...  

Abstract An increasing number of investigations have demonstrated the universal existence of arbuscular mycorrhizal fungi (AMF) in aquatic ecosystems. However, little is known about the accurate distribution and functions of AMF inhabiting aquatic ecosystems, especially ecological floating bed (EFB) which was constructed for the remediation of polluted waterbodies.In this study, we collected root samples of Canna generalis, Cyperus alternifolius and Eichhornia crassipes from three EFBs floating on two eutrophic lakes in Wuhan, China, to investigate the resources and distribution of AMF in EFBs using Illumina Mi-seq technology. A total of 229 operational taxonomic units (OTUs) and 21 taxon from 348,799 Glomeromycota sequences were detected. Glomus was the most dominant AMF in the three EFBs while the second dominant AMF was related to Acaulospora. Different aquatic plant species exhibited varying degrees of AMF colonization (3.83%~71%), diversity (6~103 OTUs, 3~15 virtual taxa) and abundance (14~57551 sequences). Low AMF abundance but relatively high AMF diversity were found in C. alternifolius which is usually considered as non-mycorrhizal, demonstrating the high accuracy of Illumina sequencing. In addition, results from this study suggested a lognormal species abundance distribution was observed across AMF taxa in the three plant species, and the AMF community composition was closely related to pH, nitrogen and phosphorus.Overall, our data demonstrated that diverse and abundant AMF communities were living in EFBs, and the AMF community composition was closely related to the water quality of eutrophic lakes treated by EFBs, providing potential possibility for the applications of AMF in plant-based bioremediation of wastewater.


Botany ◽  
2014 ◽  
Vol 92 (4) ◽  
pp. 277-285 ◽  
Author(s):  
Ülle Saks ◽  
John Davison ◽  
Maarja Öpik ◽  
Martti Vasar ◽  
Mari Moora ◽  
...  

We analyzed arbuscular mycorrhizal fungal (AMF) communities in plant root samples from a natural forest ecosystem — a primeval forest in Järvselja, Estonia. AMF small-subunit (SSU) ribosomal RNA genes were subjected to 454-pyrosequencing and BLAST-based taxonomic identification. Seventy-six AMF sequence groups (virtual taxa, VT) were identified from plant roots. Taken together with seven additional VT recorded in an earlier investigation of soil AMF communities at the site, this represents the highest number of AMF reported from a single ecosystem to date. The six study plant species hosted similar AMF communities. However, AMF community composition in plant roots was significantly different from that in soil and considerably more VT were retrieved from roots than from soil. AMF VT identified from plant roots as a whole and from individual plant species were frequently phylogenetically clustered compared with local and global taxon pools, suggesting that nonrandom assembly processes, notably habitat filtering, may have shaped fungal assemblages. In contrast, the phylogenetic dispersion of AMF communities in soil did not differ from random subsets of the local or global taxon pools.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marie- Noëlle Binet ◽  
Camille Marchal ◽  
Justine Lipuma ◽  
Roberto A. Geremia ◽  
Olivier Bagarri ◽  
...  

AbstractWe investigated root communities of arbuscular mycorrhizal fungi (AMF) in relation to lavender (Lavandula angustifolia) and lavandin (Lavandula intermedia) health status from organic and conventional fields affected by Phytoplasma infection. The intensity of root mycorrhizal colonization was significantly different between diseased and healthy plants and was higher in the latter regardless of agricultural practice. This difference was more pronounced in lavender. The root AMF diversity was influenced by the plant health status solely in lavender and only under the conventional practice resulting in an increase in the AMF abundance and richness. The plant health status did not influence the distribution of root AMF communities in lavandin unlike its strong impact in lavender in both agricultural practices. Finally, among the most abundant molecular operational taxonomic units (MOTUs), four different MOTUs for each plant species were significantly abundant in the roots of healthy lavender and lavandin in either agricultural practice. Our study demonstrated that the plant health status influences root colonization and can influence the diversity and distribution of root AMF communities. Its effects vary according to plant species, can be modified by agricultural practices and allow plants to establish symbiosis with specific AMF species.


Sign in / Sign up

Export Citation Format

Share Document