scholarly journals Short-Term Temporal Variability in Airborne Bacterial and Fungal Populations

2007 ◽  
Vol 74 (1) ◽  
pp. 200-207 ◽  
Author(s):  
Noah Fierer ◽  
Zongzhi Liu ◽  
Mari Rodríguez-Hernández ◽  
Rob Knight ◽  
Matthew Henn ◽  
...  

ABSTRACT Airborne microorganisms have been studied for centuries, but the majority of this research has relied on cultivation-dependent surveys that may not capture all of the microbial diversity in the atmosphere. As a result, our understanding of airborne microbial ecology is limited despite the relevance of airborne microbes to human health, various ecosystem functions, and environmental quality. Cultivation-independent surveys of small-subunit rRNA genes were conducted in order to identify the types of airborne bacteria and fungi found at a single site (Boulder, CO) and the temporal variability in the microbial assemblages over an 8-day period. We found that the air samples were dominated by ascomycete fungi of the Hypocreales order and a diverse array of bacteria, including members of the proteobacterial and Cytophaga-Flavobacterium-Bacteroides groups that are commonly found in comparable culture-independent surveys of airborne bacteria. Bacterium/fungus ratios varied by 2 orders of magnitude over the sampling period, and we observed large shifts in the phylogenetic diversity of bacteria present in the air samples collected on different dates, shifts that were not likely to be related to local meteorological conditions. We observed more phylogenetic similarity between bacteria collected from geographically distant sites than between bacteria collected from the same site on different days. These results suggest that outdoor air may harbor similar types of bacteria regardless of location and that the short-term temporal variability in airborne bacterial assemblages can be very large.

2006 ◽  
Vol 72 (10) ◽  
pp. 6707-6715 ◽  
Author(s):  
Andrew B. Dalby ◽  
Daniel N. Frank ◽  
Allison L. St. Amand ◽  
Alison M. Bendele ◽  
Norman R. Pace

ABSTRACT Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed for a variety of inflammatory conditions; however, the benefits of this class of drugs are accompanied by deleterious side effects, most commonly gastric irritation and ulceration. NSAID-induced ulceration is thought to be exacerbated by intestinal microbiota, but previous studies have not identified specific microbes that contribute to these adverse effects. In this study, we conducted a culture-independent analysis of ∼1,400 bacterial small-subunit rRNA genes associated with the small intestines and mesenteric lymph nodes of rats treated with the NSAID indomethacin. This is the first molecular analysis of the microbiota of the rat small intestine. A comparison of clone libraries and species-specific quantitative PCR results from rats treated with indomethacin and untreated rats revealed that organisms closely related to Enterococcus faecalis were heavily enriched in the small intestine and mesenteric lymph nodes of the treated rats. These data suggest that treatment of NSAID-induced ulceration may be facilitated by addressing the microbiological imbalances.


2012 ◽  
Vol 78 (20) ◽  
pp. 7467-7475 ◽  
Author(s):  
Amy Apprill ◽  
Heather Q. Marlow ◽  
Mark Q. Martindale ◽  
Michael S. Rappé

ABSTRACTRelationships between corals and specific bacterial associates are thought to play an important role in coral health. In this study, the specificity of bacteria associating with the coralPocillopora meandrinawas investigated by exposing coral embryos to various strains of cultured marine bacteria, sterile seawater, or raw seawater and examining the identity, density, and location of incorporated cells. The isolates utilized in this experiment included members of the Roseobacter and SAR11 clades of theAlphaproteobacteria, aPseudoalteromonasspecies of theGammaproteobacteria, and aSynechococcusspecies of theCyanobacteriaphylum. Based on terminal restriction fragment length polymorphism analysis of small-subunit rRNA genes, similarities in bacterial communities associated with 170-h-old planulae were observed regardless of treatment, suggesting that bacteria may have been externally associated from the outset of the experiment. Microscopic examination ofP. meandrinaplanulae by fluorescencein situhybridization with bacterial and Roseobacter clade-specific oligonucleotide probes revealed differences in the densities and locations of planulae-associated cells. Planulae exposed to either raw seawater or strains ofPseudoalteromonasand Roseobacter harbored the highest densities of internally associated cells, of which 20 to 100% belonged to the Roseobacter clade. Planulae exposed to sterile seawater or strains of the SAR11 clade andSynechococcusdid not show evidence of prominent bacterial associations. Additional analysis of the raw-seawater-exposed planulae via electron microscopy confirmed the presence of internally associated prokaryotic cells, as well as virus-like particles. These results suggest that the availability of specific microorganisms may be an important factor in the establishment of coral-bacterial relationships.


2011 ◽  
Vol 6 (3) ◽  
pp. 481-492 ◽  
Author(s):  
Alexander H Treusch ◽  
Elif Demir-Hilton ◽  
Kevin L Vergin ◽  
Alexandra Z Worden ◽  
Craig A Carlson ◽  
...  

2017 ◽  
Vol 866 ◽  
pp. 144-147
Author(s):  
Duongruitai Nicomrat ◽  
Paisan Kanthang ◽  
Siriphatrc Chamutpong

The research was conducted to understand the diversity of microbial communities in the rice cultivars KDM 105 in the rice fields at Sanamchaikate, Chachoengsao Province. The culturing bacterial community in paddy soil before planting, during the planting and sowing of rice, and after rice collection as well as isolation of free nitrogen fixing bacteria under aerobic and anaerobic conditions were identified by molecular comparision of 16S small subunit rRNA genes as well as species diversity and their richness by Most Probable Number (MPN) method. Culturable bacterial isolates in the soil around the roots of rice varieties were determined for their physical appearances on the solid culture (Plate culturing method) and the microscopic observation under light microscope. It was found that bacteria in the paddy soil complemented with organic fertilizers and no pesticide application for over five years had a pH range from 5.2 to 5.5 cultivated jasmine rice, 8-9 log Units of free N2-fixing bacteria near the roots compared with those in other area having 4-5 log Units. Most of them were identified to be Pseudomonas sp. Microbacterium sp. Bacillus sp. Stenotrophomonas sp. and Burkholderia sp., by homology comparison of 16S rDNA gene at 98, 97, 99, 99.5, and 99%, respectively. This research revealed the recognizable complex and change in soil bacteria presented in paddy ecosystem. In any critical change of to the soil, the study of microbial diversity, compositions and their richness can be further useful for indicating proper soil management.


2002 ◽  
Vol 68 (10) ◽  
pp. 5123-5135 ◽  
Author(s):  
Carrine E. Blank ◽  
Sherry L. Cady ◽  
Norman R. Pace

ABSTRACT The extent of hyperthermophilic microbial diversity associated with siliceous sinter (geyserite) was characterized in seven near-boiling silica-depositing springs throughout Yellowstone National Park using environmental PCR amplification of small-subunit rRNA genes (SSU rDNA), large-subunit rDNA, and the internal transcribed spacer (ITS). We found that Thermocrinis ruber, a member of the order Aquificales, is ubiquitous, an indication that primary production in these springs is driven by hydrogen oxidation. Several other lineages with no known close relatives were identified that branch among the hyperthermophilic bacteria. Although they all branch deep in the bacterial tree, the precise phylogenetic placement of many of these lineages is unresolved at this time. While some springs contained a fair amount of phylogenetic diversity, others did not. Within the same spring, communities in the subaqueous environment were not appreciably different than those in the splash zone at the edge of the pool, although a greater number of phylotypes was found along the pool's edge. Also, microbial community composition appeared to have little correlation with the type of sinter morphology. The number of cell morphotypes identified by fluorescence in situ hybridization and scanning electron microscopy was greater than the number of phylotypes in SSU clone libraries. Despite little variation in Thermocrinis ruber SSU sequences, abundant variation was found in the hypervariable ITS region. The distribution of ITS sequence types appeared to be correlated with distinct morphotypes of Thermocrinis ruber in different pools. Therefore, species- or subspecies-level divergences are present but not detectable in highly conserved SSU sequences.


2016 ◽  
Vol 82 (13) ◽  
pp. 3822-3833 ◽  
Author(s):  
Despoina S. Lymperopoulou ◽  
Rachel I. Adams ◽  
Steven E. Lindow

ABSTRACTGiven that epiphytic microbes are often found in large population sizes on plants, we tested the hypothesis that plants are quantitatively important local sources of airborne microorganisms. The abundance of microbial communities, determined by quantifying bacterial 16S RNA genes and the fungal internal transcribed spacer (ITS) region, in air collected directly above vegetation was 2- to 10-fold higher than that in air collected simultaneously in an adjacent nonvegetated area 50 m upwind. Nonmetric multidimensional scaling revealed that the composition of airborne bacteria in upwind air samples grouped separately from that of downwind air samples, while communities on plants and downwind air could not be distinguished. In contrast, fungal taxa in air samples were more similar to each other than to the fungal epiphytes. A source-tracking algorithm revealed that up to 50% of airborne bacteria in downwind air samples were presumably of local plant origin. The difference in the proportional abundances of a given operational taxonomic unit (OTU) between downwind and upwind air when regressed against the proportional representation of this OTU on the plant yielded a positive slope for both bacteria and fungi, indicating that those taxa that were most abundant on plants proportionally contributed more to downwind air. Epiphytic fungi were less of a determinant of the microbiological distinctiveness of downwind air and upwind air than epiphytic bacteria. Emigration of epiphytic bacteria and, to a lesser extent, fungi, from plants can thus influence the microbial composition of nearby air, a finding that has important implications for surrounding ecosystems, including the built environment into which outdoor air can penetrate.IMPORTANCEThis paper addresses the poorly understood role of bacterial and fungal epiphytes, the inhabitants of the aboveground plant parts, in the composition of airborne microbes in outdoor air. It is widely held that epiphytes contribute to atmospheric microbial assemblages, but much of what we know is limited to qualitative assessments. Elucidating the sources of microbes in outdoor air can inform basic biological processes seen in airborne communities (e.g., dispersal and biogeographical patterns). Furthermore, given the considerable contribution of outdoor air to microbial communities found within indoor environments, the understanding of plants as sources of airborne microbes in outdoor air might contribute to our understanding of indoor air quality. With an experimental design developed to minimize the likelihood of other-than-local plant sources contributing to the composition of airborne microbes, we provide direct evidence that plants are quantitatively important local sources of airborne microorganisms, with implications for the surrounding ecosystems.


Parasitology ◽  
1999 ◽  
Vol 119 (3) ◽  
pp. 273-286 ◽  
Author(s):  
E. U. CANNING ◽  
A. CURRY ◽  
S. CHENEY ◽  
N. J. LAFRANCHI-TRISTEM ◽  
M. A. HAQUE

The microsporidian genus Nosema is characterized by development in direct control with host cell cytoplasm, diplokaryotic nuclei throughout development and disporous sporogony. The genus Vairimorpha exhibits the same features plus an octoporous sporogony producing uninucleate spores in a sporophorous vesicle. A microsporidium from diamondback moth, Plutella xylostella, falls between Nosema and Vairimorpha in that it initiates but fails to complete the octosporous sequence in this host. The name Vairimorpha imperfecta n.sp. is proposed. Merogony is mainly by formation of buds from multinucleate meronts, the buds remaining attached in chains. Diplokaryotic spores measure 4·3×2·0 μm (fresh) and have 15·5 coils of the polar tube in 1 rank. The octosporous sporogony is aborted owing to irregular formation of nuclear spindles, incomplete cytoplasmic fission and bizarre deposition of electron-dense episporontal secretions. Phylogenetic analyses of the sequences of the small subunit rRNA genes of V. imperfecta and of several Nosema and Vairimorpha spp. place V. imperfecta in a clade with Nosema spp. from Lepidoptera rather than in the clade containing the more typical species of Vairimorpha. It is suggested that the ancestors of the Vairimorpha/Nosema complex of species exhibited both disporous and octosporous sporogonies, as does the type species of Vairimorpha, Vairimorpha necatrix. It would follow that true Nosema spp. have lost the ability to express an octosporous sequence and that V. imperfecta is in the process of losing it. It is proposed that the genera Nosema and Vairimorpha be placed in the same family Nosematidae Labbé 1899, rather than in separate families and orders as at present.


2006 ◽  
Vol 72 (1) ◽  
pp. 793-801 ◽  
Author(s):  
Alexandra J Scupham ◽  
Laura L. Presley ◽  
Bo Wei ◽  
Elizabeth Bent ◽  
Natasha Griffith ◽  
...  

ABSTRACT Enteric microbiota play a variety of roles in intestinal health and disease. While bacteria in the intestine have been broadly characterized, little is known about the abundance or diversity of enteric fungi. This study utilized a culture-independent method termed oligonucleotide fingerprinting of rRNA genes (OFRG) to describe the compositions of fungal and bacterial rRNA genes from small and large intestines (tissue and luminal contents) of restricted-flora and specific-pathogen-free mice. OFRG analysis identified rRNA genes from all four major fungal phyla: Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. The largest assemblages of fungal rRNA sequences were related to the genera Acremonium, Monilinia, Fusarium, Cryptococcus/Filobasidium, Scleroderma, Catenomyces, Spizellomyces, Neocallimastix, Powellomyces, Entophlyctis, Mortierella, and Smittium and the order Mucorales. The majority of bacterial rRNA gene clones were affiliated with the taxa Bacteroidetes, Firmicutes, Acinetobacter, and Lactobacillus. Sequence-selective PCR analyses also detected several of these bacterial and fungal rRNA genes in the mouse chow. Fluorescence in situ hybridization analysis with a fungal small-subunit rRNA probe revealed morphologically diverse microorganisms resident in the mucus biofilm adjacent to the cecal and proximal colonic epithelium. Hybridizing organisms comprised about 2% of the DAPI (4′,6-diamidino-2-phenylindole, dihydrochloride)-positive organisms in the mucus biofilm, but their abundance in fecal material may be much lower. These data indicate that diverse fungal taxa are present in the intestinal microbial community. Their abundance suggests that they may play significant roles in enteric microbial functions.


Sign in / Sign up

Export Citation Format

Share Document