airborne microbes
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 30)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kruttika S. Phadke ◽  
Deepak G. Madival ◽  
Janani Venkataraman ◽  
Debosmita Kundu ◽  
K. S. Ramanujan ◽  
...  

AbstractPreventing nosocomial infection is a major unmet need of our times. Existing air decontamination technologies suffer from demerits such as toxicity of exposure, species specificity, noxious gas emission, environment-dependent performance and high power consumption. Here, we present a novel technology called “ZeBox” that transcends the conventional limitations and achieves high microbicidal efficiency. In ZeBox, a non-ionizing electric field extracts naturally charged microbes from flowing air and deposits them on engineered microbicidal surfaces. The surface’s three dimensional topography traps the microbes long enough for them to be inactivated. The electric field and chemical surfaces synergistically achieve rapid inactivation of a broad spectrum of microbes. ZeBox achieved near complete kill of airborne microbes in challenge tests (5–9 log reduction) and $$>90\%$$ > 90 % efficiency in a fully functional stem cell research facility in the presence of humans. Thus, ZeBox fulfills the dire need for a real-time, continuous, safe, trap-and-kill air decontamination technology.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1360
Author(s):  
Janne Salin ◽  
Pasi Ohtonen ◽  
Maria A. Andersson ◽  
Hannu Syrjälä

Background: The causes and pathophysiological mechanisms of building-related symptoms (BRS) remain open. Objective: We aimed to investigate the association between teachers’ individual work-related symptoms and intrinsic in vitro toxicity in classrooms. This is a further analysis of a previously published dataset. Methods: Teachers from 15 Finnish schools in Helsinki responded to the symptom survey. The boar sperm motility inhibition assay, a sensitive indicator of mitochondrial dysfunction, was used to measure the toxicity of wiped dust and cultured microbial fallout samples collected from the teachers’ classrooms. Results: 231 teachers whose classroom toxicity data had been collected responded to the questionnaire. Logistic regression analysis adjusted for age, gender, smoking, and atopy showed that classroom dust intrinsic toxicity was statistically significantly associated with the following 12 symptoms reported by teachers (adjusted ORs in parentheses): nose stuffiness (4.1), runny nose (6.9), hoarseness (6.4), globus sensation (9.0), throat mucus (7.6), throat itching (4.4), shortness of breath (12.2), dry cough (4.7), wet eyes (12.7), hypersensitivity to sound (7.9), difficulty falling asleep (7.6), and increased need for sleep (7.7). Toxicity of cultured microbes was found to be associated with nine symptoms (adjusted ORs in parentheses): headache (2.3), nose stuffiness (2.2), nose dryness (2.2), mouth dryness (2.8), hoarseness (2.2), sore throat (2.8), throat mucus (2.3), eye discharge (10.2), and increased need for sleep (3.5). Conclusions: The toxicity of classroom dust and airborne microbes in boar sperm motility inhibition assay significantly increased teachers’ risk of work-related respiratory and ocular symptoms. Potential pathophysiological mechanisms of BRS are discussed.


Author(s):  
Tim Eaton

Airborne microbiological concentrations within pharmaceutical cleanrooms are determined by sampling and to maximise the detection of any airborne microbes, it is essential that the sampling is undertaken in locations where there is greatest contamination risk using air samplers that have a verified and appropriate performance. Sampler performance can be assessed by review of both the physical and biological collection efficiencies that are determined by testing. The physical collection efficiency is the ability to collect particles of various sizes and the biological collection efficiency assesses the collection of viable microbes that includes the losses caused by the physical collection efficiency and the detrimental effect that the sampling has on the viability of the captured microbes. Due to the limitations of the established biological collection efficiency test method, this efficiency is only determined for microbes of sub-micron size which are not representative of the larger microbe-carrying particles typically present with cleanrooms. Samplers with a low physical collection efficiency for sub-micron particles are likely to have a poor performance when this test method is utilised and in an attempt to remove this bias from the testing the ‘biological efficiency’, is often reported. This is a measure of the likelihood that any captured microbes would survive, but is often mistaken for the biological collection efficiency and samplers may be utilised in the false belief that they have an appropriate performance. This article provides information regarding air sampler performance testing and reviews the test results reported by the same independent specialist testing company, therefore negating issues resulting from different testing methods, for three different air samplers. The results that are used to determine the ‘biological efficiency’ are examined to provide information relating to the biological collection efficiency of each sampler and to also provide additional information relating to the physical collection efficiency. Improvements to enhance the air sampler testing procedures, to enable a better direct comparison of the performance of different samplers, are suggested.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vicente J. Ontiveros ◽  
Joan Cáliz ◽  
Xavier Triadó-Margarit ◽  
David Alonso ◽  
Emilio O. Casamayor

AbstractMicroorganisms attached to aerosols can travel intercontinental distances, survive, and further colonize remote environments. Airborne microbes are influenced by environmental and climatic patterns that are predicted to change in the near future, with unknown consequences. We developed a new predictive method that dynamically addressed the temporal evolution of biodiversity in response to environmental covariates, linked to future climatic scenarios of the IPCC (AR5). We fitted these models against a 7-year monitoring of airborne microbes, collected in wet depositions. We found that Bacteria were more influenced by climatic variables than by aerosols sources, while the opposite was detected for Eukarya. Also, model simulations showed a general decline in bacterial richness, idiosyncratic responses of Eukarya, and changes in seasonality, with higher intensity within the worst-case climatic scenario (RCP 8.5). Additionally, the model predicted lower richness for airborne potential eukaryotic (fungi) pathogens of plants and humans. Our work pioneers on the potential effects of environmental variability on the airborne microbiome under the uncertain context of climate change.


2021 ◽  
Vol 7 (10) ◽  
pp. 802
Author(s):  
Xuefeng Peng ◽  
Daniela Gat ◽  
Adina Paytan ◽  
Yinon Rudich

Airborne microbial communities directly impact the health of humans, animals, plants, and receiving ecosystems. While airborne bacterial and fungal communities have been studied by both cultivation-based methods and metabarcoding surveys targeting specific molecular markers, fewer studies have used shotgun metagenomics to study the airborne mycobiome. We analyzed the diversity and relative abundance of fungi in nine airborne metagenomes collected on clear days (“background”) and during dust storms in the Eastern Mediterranean. The negative correlation between the relative abundance of fungal reads and the concentrations of atmospheric particulate matter having an aerodynamic diameter smaller than 10 μm (PM10) indicate that dust storms lower the proportion of fungi in the airborne microbiome, possibly due to the lower relative abundance of fungi in the dust storm source regions and/or more effective transport of bacteria by the dust. Airborne fungal community composition was altered by the dust storms, particularly those originated from Syria, which was enriched with xerophilic fungi. We reconstructed a high-quality fungal metagenome-assembled genome (MAG) from the order Cladosporiales, which include fungi known to adapt to environmental extremes commonly faced by airborne microbes. The negative correlation between the relative abundance of Cladosporiales MAG and PM10 concentrations indicate that its origin is dominated by local sources and likely includes the indoor environments found in the city.


2021 ◽  
Author(s):  
Verginica Schröder ◽  
Daniela Turcanu-Carutiu ◽  
Adina Honcea ◽  
Sorin Grigore ◽  
Loreley-Dana Jianu

The constituent elements of the Roman Mosaic from Constanta are damaged under the activities of microorganisms present both on surfaces and in the airborne microbes. The predominance of microorganisms on the different surfaces of the edifice has led to multiple damage such as discoloration, pigmentation, wall degradation and exposed ceramic objects. Through this study we aimed to invest the diversity of microorganisms on the various substrates and levels as well as microclimate conditions. From the samples collected there were isolated and identified microorganisms, many of them with pathogenicity risks for staff and visitors. Thus, for the improvement of the surrounding conditions of the Roman Mosaic exhibition room, the need for management is aimed at reducing the microbial contaminations, based on understanding the changing conditions in the microclimate and decreasing the damage biofilm. Our study can be seen in a broader procedural in the current COVID-19 pandemic conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yan Chen ◽  
Xishen Zhu ◽  
Ziqiong Hou ◽  
Yi Wang ◽  
Yunying Zhou ◽  
...  

Fungi are ubiquitous in nature; that is, they are present everywhere on the planet; understanding the active state and functional capacity of airborne microbes associated with health of human, animal, and plant is critical for biosafety management. Here, we firstly and directly proved that there were about 40% active fungi in the air via rRNA amplicon sequencing and imaging flow cytometry simultaneously. Amplicon sequencing analysis showed differences between structures of active and total fungal community; Ascomycota were dominant in the active community, while Basidiomycota have low transcriptional activity across all samples. Notably, plant pathogenic fungi were predominant in the air, and more than 50% were active, including not only several common plant pathogens but also biotrophic fungi (Erysiphe sp. and Microbotryum sp.) and host-specific pathogens, which were generally considered to be inactive after leaving the host. Putative plant pathogens of eight genera were found active across the sampling season, indicating their superior ability to obtain nutrients even in barren nutrient environments. Interestingly, we detected several potentially active unrecorded fungi in China (Diatrype prominens, Septofusidium herbarum, Pseudomicrostroma glucosiphilum, and Uromycladium tepperianum), which suggested that they spread over a long distance by air and may cause diseases under favorable conditions. Our results suggested that maintaining transmission in air is an essential feature of many fungi including plant pathogens regardless of being a biotrophic, hemibiotrophic, or necrotrophic group. Moreover, two potentially active human pathogens and one animal pathogen were captured, which indicated their potential risks. This study provided a new perspective for more comprehensive understanding of airborne fungi, including their multidimensional lifestyle, state, functioning, and potential pathogenic risk. It also laid the foundation for further prediction and management of airborne microbial communities, which would be of interest for public health and agriculture.


2021 ◽  
Author(s):  
Kruttika S Phadke ◽  
Deepak G Madival ◽  
Janani Venkatraman ◽  
Debosmita Kundu ◽  
K S Ramanujan ◽  
...  

Preventing nosocomial infection is a major unmet need of our times. Existing air decontamination technologies suffer from demerits such as toxicity of exposure, species specificity, noxious gas emission, environment-dependent performance and high power consumption. Here, we present a novel technology called ZeBox that transcends the conventional limitations and achieves high microbicidal efficiency. In ZeBox, a non-ionizing electric field extracts naturally charged microbes from flowing air and deposits them on engineered microbicidal surfaces. The surfaces three dimensional topography traps the microbes long enough for them to be inactivated. The electric field and chemical surfaces synergistically achieve rapid inactivation of a broad spectrum of microbes. ZeBox achieved near complete kill of airborne microbes in challenge tests (5-9 log reduction) and >90% efficiency in a fully functional stem cell research facility in the presence of humans. Thus, ZeBox fulfills the dire need for a real-time, continuous, safe, trap-and-kill air decontamination technology.


Author(s):  
Aswin Sidhaarth K. R., Et. al.

Operation suite in hospitals is an environment where airborne microorganisms spread quickly. In operation suites airborne microorganisms spread through wounds of the patients, surgical instruments and gloves, air conditioner etc. Various health effects such as, gasping irritation and nonspecific symptoms, inhaling infections, asthma and allergy, Bagassosis and organic dust toxic syndrome, and chronic obstructive pulmonary diseases are created by these airborne micro organisms. So in order to reduce or avoid this problem it is essential to monitor the quality of air in operation suites and also to reduce the effects of airborne microbes. This study aims to show the different methods which can be adopted to bring down the serious consequences of airborne microorganisms on the individuals who are in the operation suite.


Author(s):  
Nimrod Krupnik ◽  
Dorin Theodora Asis ◽  
Natalia Belkin ◽  
Maxim Rubin-Blum ◽  
Álvaro Israel ◽  
...  

Abstract The marine macroalgae Ulva sp. is considered an ecosystem engineer in rocky shores of temperate waters worldwide. Ulva sp. harbors a rich diversity of associated microbial epibionts, which are known to affect the algae's typical morphological development and ‘health’. We examined the interaction between airborne microbes derived from atmospheric aerosols and Ulva ohnoi growth and physiological state. Specifically, we measured U. ohnoi growth rates and photosynthetic efficiency (Fv/Fm), alongside its microbial epibionts abundance, activity and diversity following dust (containing nutrients and airborne microorganisms) or UV-treated dust (only nutrients) amendments to filtered seawater. Parallel incubations with epibionts-free U. ohnoi (treated with antibiotics that removed the algae epibionts) were also tested to specifically examine if dust-borne microbes can replenish the epibiont community of U. ohnoi. We show that viable airborne microbes can restore U. ohnoi natural microbial epibionts communities, thereby keeping the seaweed alive and ‘healthy’. These results suggest that microbes delivered through atmospheric aerosols can affect epiphyte biodiversity in marine flora, especially in areas subjected to high annual atmospheric dust deposition such as the Mediterranean Sea.


Sign in / Sign up

Export Citation Format

Share Document