Suppression of arbuscular mycorrhizal fungi aggravate the negative interactive effects of warming and nitrogen addition on soil bacterial and fungal diversity and community composition

Author(s):  
Xue Yang ◽  
Meng Yuan ◽  
Jixun Guo ◽  
Lianxuan Shi ◽  
Tao Zhang

We examined the impacts of warming, nitrogen (N) addition and suppression of arbuscular mycorrhizal fungi (AMF) on soil bacterial and fungal richness and community composition in a field experiment. AMF root colonization and the concentration of an AMF-specific phospholipid fatty acid (PLFA) were significantly reduced after the application of the fungicide benomyl as a soil drench. Warming and N addition had no independent effects but interactively decreased soil fungal richness, while warming, N addition and AMF suppression together reduced soil bacterial richness. Soil bacterial and fungal species diversity was lower with AMF suppression, indicating that AMF suppression have negative effect on microbial diversity. Warming and N addition decreased the net loss of plant species and the plant species richness, respectively. AMF suppression reduced plant species richness and the net gain of plant species but enhanced the net loss of plant species. Structural equation modeling (SEM) demonstrated that the soil bacterial community responded to the increased soil temperature (ST) induced by warming and the increased soil available N (AN) induced by N addition through changes in AMF colonization and plant species richness; ST directly affected the bacterial community, but AN affected both the soil bacterial and fungal communities via AMF colonization. In addition, higher mycorrhizal colonization increased the plant species richness by increasing the net gains in plant species under warming and N addition. IMPORTANCE Arbuscular mycorrhizal fungi (AMF) can influence the composition and diversity of plant communities. Previous studies have shown that climate warming and N deposition reduce the effectiveness of AMF. However, how AMF affects soil bacterial and fungal communities under these global change drivers are still poorly understood. A 4-year field study revealed that AMF suppression decreased bacterial and fungal diversity irrespective of warming or N addition, while AMF suppression interacted with warming or N addition to reduce bacterial and fungal richness. In addition, bacterial and fungal community compositions were determined by mycorrhizal colonization which was regulated by soil AN and ST. These results suggest that AMF suppression can aggravate the severe losses to native soil microbial diversity and functioning caused by global changes and thus AMF plays a vital role in maintaining belowground ecosystem stability in the future.

2006 ◽  
Vol 20 (3) ◽  
pp. 513-521 ◽  
Author(s):  
Sidney Luiz Stürmer ◽  
Osmar Klauberg Filho ◽  
Maike Hering de Queiroz ◽  
Margarida Matos de Mendonça

Arbuscular mycorrhizal fungi (AMF) species diversity and mycorrhizal inoculum potential were assessed in areas representative of stages of secondary succession in the Brazilian Atlantic Rain Forest. Within each stage - pioneer, 'capoeirinha' and 'capoeirão'- four transects were established and three soil samples were taken along each transect. The plant community was dominated by Pteridium aquilinium in the pioneer stage, while Dodonaea viscosa and P. aquilinium were co-dominants in the 'capoeirinha' stage. In capoeirão, Miconia cinnamomifolia was dominant followed by Euterpe edulis. Total spore number per 100 g soil was significantly larger in the 'capoeirinha' stage than in the other stages, although the number of viable spores was similar among stages. Acaulosporaceae and Glomeraceae were the predominant families accounting for 83% of the total spores recovered. Of the 18 spore morphotypes, 10 were allocated to known species, with Acaulospora sp. and Glomus sp. being the dominants recovered in all samples. Simpson's index of diversity and evenness for AMF species were not significantly different among the successional stages and AMF species richness was negatively correlated with plant species richness. Soil from 'Capoeirinha" showed the highest inoculum potential (37%). Dominance of the mycorrhizal community by few sporulators and the relationship between plant and fungal diversity are discussed.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anurag Chaturvedi ◽  
Joaquim Cruz Corella ◽  
Chanz Robbins ◽  
Anita Loha ◽  
Laure Menin ◽  
...  

AbstractEarly-diverging fungi (EDF) are distinct from Dikarya and other eukaryotes, exhibiting high N6-methyldeoxyadenine (6mA) contents, rather than 5-methylcytosine (5mC). As plants transitioned to land the EDF sub-phylum, arbuscular mycorrhizal fungi (AMF; Glomeromycotina) evolved a symbiotic lifestyle with 80% of plant species worldwide. Here we show that these fungi exhibit 5mC and 6mA methylation characteristics that jointly set them apart from other fungi. The model AMF, R. irregularis, evolved very high levels of 5mC and greatly reduced levels of 6mA. However, unlike the Dikarya, 6mA in AMF occurs at symmetrical ApT motifs in genes and is associated with their transcription. 6mA is heterogeneously distributed among nuclei in these coenocytic fungi suggesting functional differences among nuclei. While far fewer genes are regulated by 6mA in the AMF genome than in EDF, most strikingly, 6mA methylation has been specifically retained in genes implicated in components of phosphate regulation; the quintessential hallmark defining this globally important symbiosis.


2001 ◽  
Vol 79 (10) ◽  
pp. 1161-1166 ◽  
Author(s):  
John N Klironomos ◽  
Miranda M Hart ◽  
Jane E Gurney ◽  
Peter Moutoglis

Arbuscular mycorrhizal fungal communities in northern temperate ecosystems must function during extremes in environmental conditions. However, it is not known if arbuscular mycorrhizal fungi that co-exist in soil communities have similar tolerances to stresses such as drought and freezing. The phenology of arbuscular mycorrhizal fungi was determined over one year in a community in southern Ontario, Canada. Five fungal species from the same community were then used to inoculate five plant species, in all possible combinations, and were subjected to either a freezing treatment or a drought treatment after which new seedlings were transplanted into the treated pots. The percent colonization of roots of each plant species was measured as the difference in mean colonization from the control. Freezing reduced percent colonization in almost every case, whereas drought resulted in both increased and decreased percent colonization. Fungal species responded differently to the treatments, and there was a pronounced plant × fungus effect. These results support the hypothesis that distinct functional groups of arbuscular mycorrhizal fungi exist, and these may determine plant community structure.Key words: arbuscular mycorrhizal fungi, freezing, drying, functional diversity.


2019 ◽  
Vol 40 ◽  
pp. 118-126
Author(s):  
Clémentine Lepinay ◽  
Tomáš Dostálek ◽  
Hana Pánková ◽  
Martina Svobodová ◽  
Jana Rydlová ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document