Criteria for the Utilization, Design and Operation of UASB Reactors

1986 ◽  
Vol 18 (12) ◽  
pp. 55-69 ◽  
Author(s):  
M. E. Souza

This paper describes and discusses the principal ideas and parameters related to the application, design and operation of wastewater treatment systems using the upflow anaerobic sludge blanket reactor (UASB). The differences in the process brought about by the high or low concentration of organic material in the wastewater to be treated are pointed out in each consideration. The purpose of this paper is to make the development of simple, but safe and efficient UASB reactor treatment units, by technicians not necessarily highly specialized in the subject, possible. It also attempts to point out problems which are not yet completely solved in order to help in the preparation of future research and development plans. A number of possible questions that deal with the following subjects are discussed:–types of waste which can be treated by the UASB reactor–concentrated wastes (for example, stillage from sugar-cane) and diluted wastes (for example, domestic sewage)–necessity of pre- and post-treatment–temperature–shape and dimensions of the reactor–criteria and details for design–start-up, operation and control of the unit–forecasts of efficiency, costs, etc.

2001 ◽  
Vol 44 (4) ◽  
pp. 79-82 ◽  
Author(s):  
L. F. Lopes ◽  
P. R. Koetz ◽  
M. S. Santos

Parboiled rice industry is one of main food industries in the south of Brazil. The main parts of the processing are the humidification and gelatinization of the grain. This procedure increases the productivity and nutritive and cooking values of the product. Some of these industries in the region utilize upflow anaerobic sludge blanket (UASB) reactors as a biological treatment for carbon removal. For nitrogen removal, the proposed system aims to eliminate an extra denitrification reactor, making this step in the top of the UASB, an anoxic zone of the reactor. Nitrification was performed in aerated mixed reactor of 3,6 L. A fraction of the NR was recycled in the top of UASB reactor above the sludge blanket. Recycled ratio varied from 0; 1:0.5; 1:1.0; to 1:1.5. The maximum removal efficiency of NTK was 80%. The results confirm the viability of the proposed system for denitrification.


1990 ◽  
Vol 22 (9) ◽  
pp. 167-174 ◽  
Author(s):  
S. S. Cheng ◽  
J. J. Lay ◽  
Y. T. Wei ◽  
M. H. Wu ◽  
G. D. Roam ◽  
...  

During the last two years,twenty-seven bioreactors of upflow anaerobic sludge blanket(UASB) process were constructed and operated well to treat 3,300 m3/day of winery wastewater in six winery plants in Taiwan. Each UASB reactor was installed with an internal filter and a side-armed sludge settler to separate gas-liquid-solid effectively in 127 m3 of reactor volume.These six plants established good performance of UASB process with different organic loadings depending on different characteristics of the winery wastewater. Start-up performance of the modified UASB process in four winery plants was investigated.Bioactivity of anaerobic sludge in each UASB was evaluated by means of Biochemical Methane Potential (BMP)test. Biokinetics of Monod and Haldane models were employed to interpret the different sludge characteristics in terms of gas production rate. Scanning electronic microscopy also showed different morphology of sludge granules in three UASB systems.


1995 ◽  
Vol 31 (1) ◽  
pp. 249-259 ◽  
Author(s):  
Nina Christiansen ◽  
Hanne V. Hendriksen ◽  
Kimmo T. Järvinen ◽  
Birgitte K. Ahring

Data on anaerobic degradation of chloroaromatic compounds in Upflow Anaerobic Sludge Blanket Reactors (UASB-reactor) are presented and compared. Special attention is given to the metabolic pathways for degradation of chlorinated phenols by granular sludge. Results indicate that PCP can be degraded in UASB-reactors via stepwise dechlorination to phenol. Phenol will subsequently be converted to benzoate before ring cleavage. Dechlorination proceeds via different pathways dependent upon the inocula used. Results are further presented on the design of special metabolic pathways in granules which do not possess this activity using the dechlorinating organism, Desulfomonile tiedjei. Additionally, it is shown that it is possible to immobilize Dechlorosporium hafniense, a newly isolated dechlorinating anaerobe, into granular sludge, thereby introducing an ability not previously present in the granules.


1999 ◽  
Vol 40 (8) ◽  
pp. 57-62 ◽  
Author(s):  
A. Pun˜al ◽  
J. M. Lema

The start-up and optimisation of a 380 m3 UASB reactor (Up-flow Anaerobic Sludge Blanket) treating wastewater from a fish-canning factory was carried out. At the beginning of the operation the Organic Loading Rate (OLR) was 1 kg COD/m3·d. Then, the load was gradually increased in steps of 50% OLR until the final capacity of the system (4 kg COD/m3·d) was achieved. Wastewater characteristics were highly dependent on the canned product (mussel, tuna, sardines, etc.). In spite of that, a stable operation working at a hydraulic retention time (HRT) of 2 days was maintained. Total Alkalinity (TA) always presented values higher than 3 g CaCO3/l, while the IA/TA ratio (Intermediate Alalinity/Total Alkalinity) was always maintained lower than 0.3. In order to improve granulation conditions, upward velocities from 0.5 to 0.8 m/h were applied. The highest values caused the washout of non-granulated biomass from the reactor, optimum operation being achieved at an upward velocity of 0.7 m/h.


2010 ◽  
Vol 76 (8) ◽  
pp. 2652-2656 ◽  
Author(s):  
Bing-Jie Ni ◽  
Bao-Lan Hu ◽  
Fang Fang ◽  
Wen-Ming Xie ◽  
Boran Kartal ◽  
...  

ABSTRACT Anaerobic ammonium oxidation (anammox) is a promising new process to treat high-strength nitrogenous wastewater. Due to the low growth rate of anaerobic ammonium-oxidizing bacteria, efficient biomass retention is essential for reactor operation. Therefore, we studied the settling ability and community composition of the anaerobic ammonium-oxidizing granules, which were cultivated in an upflow anaerobic sludge blanket (UASB) reactor seeded with aerobic granules. With this seed, the start-up period was less than 160 days at a NH4 +-N removal efficiency of 94% and a loading rate of 0.064 kg N per kg volatile suspended solids per day. The formed granules were bright red and had a high settling velocity (41 to 79 m h−1). Cells and extracellular polymeric substances were evenly distributed over the anaerobic ammonium-oxidizing granules. The high percentage of anaerobic ammonium-oxidizing bacteria in the granules could be visualized by fluorescent in situ hybridization and electron microscopy. The copy numbers of 16S rRNA genes of anaerobic ammonium-oxidizing bacteria in the granules were determined to be 4.6 � 108 copies ml−1. The results of this study could be used for a better design, shorter start-up time, and more stable operation of anammox systems for the treatment of nitrogen-rich wastewaters.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 509-515 ◽  
Author(s):  
Huub J. Gijzen ◽  
Frank Kansiime

The start-up and performance of an Upflow Anaerobic Sludge Blanket (UASB) reactor and a Polyurethane Carrier Reactor (PCR) was investigated under similar operational conditions. The presence of polyurethane cubes as a carrier material in the PCR resulted in fast reactor start-up due to quick immobilization of methanogenic associations. Start-up of the UASB was slower compared to the PCR, which was mainly reflected in a lower biogas production and acetate degradation efficiency. However, when enough biomass had accumulated in the UASB reactor after 15 weeks of operation, the performance of the two reactors was almost the same in terms of biogas production and volatile fatty acids degradation. Efficient VFA degradation (about 90%) and biogas production (5.2 l/l.d) were achieved at an organic loading rate of 13.2 g/l.d) and HRT of 6 h. When hydraulic retention time was subsequently reduced from 6 to 2 h, the performance of the UASB reactor was better than that of the PCR. The inferior performance of the PCR may have been attributed to channelling of the influent in the reactor at high liquid flow rate.


2012 ◽  
Vol 534 ◽  
pp. 221-224
Author(s):  
Fei Yan ◽  
Jin Long Zuo ◽  
Tian Lei Qiu ◽  
Xu Ming Wang

It took 55 days to start up a lab-scale upflow anaerobic sludge blanket (UASB) reactor at ambient temperature 27-28 oC by using the synthetic wastewater, and piggery wastewater was used as the influent after the reactor start-up. From day 120 onwards, COD removal efficiency maintained in the range of 85% to 95% with 6.79-9.66 kg COD/ (m3•d) of volume loading, and the effluent COD concentration ranged between 400 mg/L and 600 mg/L. Granular sludge formation was observed in the reactor after 40-day operation, and the sludge diameter reached 2-4 mm in the 120 day-old reactor. The pH changes in the influent had little influence on COD removal from piggery wastewater using the UASB reactor.


1991 ◽  
Vol 24 (1) ◽  
pp. 69-74 ◽  
Author(s):  
J. Rintala

Anaerobic mesophilic treatment of synthetic (a mixture of acetate and methanol) and thermomechanical pulping (TMP) wastewater was studied in laboratory-scale upflow anaerobic sludge blanket (UASB) reactors and filters with emphasis on the process start-up. The reactors were inoculated with nongranular sludge. The start-up of mesophilic and thermophilic processes inoculated with mesophilic granular sludge was investigated in UASB reactors fed with diluted vinasse. The start-up proceeded faster in the filters than in the UASB reactors with TMP and synthetic wastewater. Loading rates of over 15 kgCODm−3d−1 with 50-60 % COD removal efficiencies were achieved in 10 days in the mesophilic and in 50 days in the thermophilic UASB reactor treating vinasse. The results show that high-rate anaerobic treatment can be applied to different types of industrial wastewaters under varying conditions.


2001 ◽  
Vol 44 (4) ◽  
pp. 83-88 ◽  
Author(s):  
V. Del Nery ◽  
M. H.Z. Damianovic ◽  
F. G. Barros

This work studied the performance of the dissolved air flotation (DAF) system and the start-up and the operation of two 450 m3 UASB reactors in a poultry slaughterhouse in Sorocaba, Brazil. The DAF presented reduction efficiency of grease and fats, suspended solids and COD 50% higher. The reactors were seeded with non-adapted sludge. The average COD of the reactor influent was 2,695mg/L; and the initial organic loading rate (OLR) and the initial sludge loading rate at the start-up were 0.51 kg COD/m3.day and 0.04 kg COD/kg VTS.day, respectively. The start-up period was 144 days. During this time the reactor flow rate and OLR were gradually increased. At the reactor start-up, the maximum OLR value was 2.1 kg COD/m3.day, the COD reduction was higher than 80%, and the concentration of volatile fatsty acids (VFA) was below 100mg/L. The COD reductions, considering the reactor effluent raw COD and soluble COD were similar throughout the period studied in both reactors. The reactor effluent raw COD was approximately 10% higher than the soluble COD until the 225th day of operation. From the 225th day of operation this value increased 20%-30% due to the sludge washout. The effluent soluble COD reduction, the effluent VFA concentration and the operational stability attested the good performance of UASB reactors in poultry slaughterhouse wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document