Inherent heterogeneity of influenza A virus stability following aerosolization

Author(s):  
Jessica A. Belser ◽  
Joanna A. Pulit-Penaloza ◽  
Nicole Brock ◽  
Hannah M. Creager ◽  
Kortney M. Gustin ◽  
...  

Efficient human-to-human transmission represents a necessary adaptation for a zoonotic influenza A virus (IAV) to cause a pandemic. As such, many emerging IAVs are characterized for transmissibility phenotypes in mammalian models, with an emphasis on elucidating viral determinants of transmission and the role host immune responses contribute to mammalian adaptation. Investigations of virus infectivity and stability in aerosols concurrent with transmission assessments have increased in recent years, enhancing our understanding of this dynamic process. Here, we employ a diverse panel of 17 human and zoonotic IAVs, inclusive of seasonally circulating H1N1 and H3N2 viruses, and avian and swine viruses associated with human infection, to evaluate differences in spray factor (a value that assesses efficiency of the aerosolization process), stability, and infectivity following aerosolization. While most seasonal influenza viruses did not exhibit substantial variability within these parameters, there was more heterogeneity among zoonotic influenza viruses, which possess a diverse range of transmission phenotypes. Aging of aerosols at different relative humidities identified strain-specific levels of stability with different profiles identified between zoonotic H3, H5, and H7 subtype viruses associated with human infection. As studies continue to elucidate the complex components governing virus transmissibility, notably aerosol matrices and environmental parameters, considering the relative role of subtype- and strain-specific factors to modulate these parameters will improve our understanding of the pandemic potential of zoonotic influenza A viruses. Importance Transmission of respiratory pathogens through the air can facilitate the rapid and expansive spread of infection and disease through a susceptible population. While seasonal influenza viruses are quite capable of airborne spread, there is a lack of knowledge regarding how well influenza viruses remain viable after aerosolization, and if influenza viruses capable of jumping species barriers to cause human infection differ in this property from seasonal strains. We evaluated a diverse panel of influenza viruses associated with human infection (originating from human, avian, and swine reservoirs) for their ability to remain viable after aerosolization in the laboratory under a range of conditions. We found greater diversity among avian and swine-origin viruses compared with seasonal influenza viruses; strain-specific stability was also noted. Although influenza virus stability in aerosols is an underreported property, if molecular markers associated with enhanced stability are identified, we will be able to quickly recognize emerging strains of influenza that present the greatest pandemic threat.

2015 ◽  
Vol 89 (20) ◽  
pp. 10602-10611 ◽  
Author(s):  
Wei Wang ◽  
Christopher J. DeFeo ◽  
Esmeralda Alvarado-Facundo ◽  
Russell Vassell ◽  
Carol D. Weiss

ABSTRACTInfluenza virus hemagglutinin (HA) mediates virus entry by binding to cell surface receptors and fusing the viral and endosomal membranes following uptake by endocytosis. The acidic environment of endosomes triggers a large-scale conformational change in the transmembrane subunit of HA (HA2) involving a loop (B loop)-to-helix transition, which releases the fusion peptide at the HA2 N terminus from an interior pocket within the HA trimer. Subsequent insertion of the fusion peptide into the endosomal membrane initiates fusion. The acid stability of HA is influenced by residues in the fusion peptide, fusion peptide pocket, coiled-coil regions of HA2, and interactions between the surface (HA1) and HA2 subunits, but details are not fully understood and vary among strains. Current evidence suggests that the HA from the circulating pandemic 2009 H1N1 influenza A virus [A(H1N1)pdm09] is less stable than the HAs from other seasonal influenza virus strains. Here we show that residue 205 in HA1 and residue 399 in the B loop of HA2 (residue 72, HA2 numbering) in different monomers of the trimeric A(H1N1)pdm09 HA are involved in functionally important intermolecular interactions and that a conserved histidine in this pair helps regulate HA stability. An arginine-lysine pair at this location destabilizes HA at acidic pH and mediates fusion at a higher pH, while a glutamate-lysine pair enhances HA stability and requires a lower pH to induce fusion. Our findings identify key residues in HA1 and HA2 that interact to help regulate H1N1 HA stability and virus infectivity.IMPORTANCEInfluenza virus hemagglutinin (HA) is the principal antigen in inactivated influenza vaccines and the target of protective antibodies. However, the influenza A virus HA is highly variable, necessitating frequent vaccine changes to match circulating strains. Sequence changes in HA affect not only antigenicity but also HA stability, which has important implications for vaccine production, as well as viral adaptation to hosts. HA from the pandemic 2009 H1N1 influenza A virus is less stable than other recent seasonal influenza virus HAs, but the molecular interactions that contribute to HA stability are not fully understood. Here we identify molecular interactions between specific residues in the surface and transmembrane subunits of HA that help regulate the HA conformational changes needed for HA stability and virus entry. These findings contribute to our understanding of the molecular mechanisms controlling HA function and antigen stability.


mSphere ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Jieshi Yu ◽  
Busha Hika ◽  
Runxia Liu ◽  
Zizhang Sheng ◽  
Ben M. Hause ◽  
...  

ABSTRACT Influenza D virus (IDV) utilizes cattle as a primary reservoir. Increased outbreaks in pigs and serological evidence of human infection have raised a concern about the potential of IDV adapting to humans. Here, we directly compared IDV’s stability to that of other influenza types (A, B, and C) following prolonged incubation at high temperatures or in a low-pH environment. We found that IDV is the most stable of the four types of influenza viruses. Importantly, we demonstrated that the hemagglutinin-esterase fusion (HEF) protein, which drives the fusion between viral and host cell membranes, is the primary determinant for the high thermal and acid stability of IDV. Considering that there is a link between the acid stability of the hemagglutinin protein of influenza A virus and its cross-species transmission, further investigation of the mechanism of HEF-directed viral tolerance may offer novel insights into tissue tropism and cross-species transmission of influenza viruses. Influenza D virus (IDV) is unique among four types of influenza viruses in that it utilizes cattle as a primary reservoir. The thermal and acid stability of IDV were examined and directly compared with those of influenza A virus (IAV), influenza B virus (IBV), and influenza C virus (ICV). The results of our experiments demonstrated that only IDV had a high residual infectivity (~2.5 log units of 50% tissue culture infective dose [TCID50]/ml) after a 60-min exposure to 53°C in solution at a neutral pH, and remarkably, IDV retained this infectivity even after exposure to 53°C for 120 min. Furthermore, the data showed that IDV was extremely resistant to inactivation by low pH. After being treated at pH 3.0 for 30 min, IDV lost only approximately 20% of its original infectiousness, while all other types of influenza viruses were completely inactivated. Finally, replacement of the hemagglutinin (HA) and neuraminidase (NA) proteins of a temperature- and acid-sensitive IAV with the hemagglutinin-esterase fusion (HEF) protein of a stable IDV through a reverse genetic system largely rendered the recombinant IAVs resistant to high-temperature and low-pH treatments. Together, these results indicated that the HEF glycoprotein is a primary determinant of the exceptional temperature and acid tolerance of IDV. Further investigation into the viral entry and fusion mechanism mediated by the intrinsically stable HEF protein of IDV may offer novel insights into how the fusion machinery of influenza viruses evolve to achieve acid and thermal stability, which as a result promotes the potential to transmit across mammal species. IMPORTANCE Influenza D virus (IDV) utilizes cattle as a primary reservoir. Increased outbreaks in pigs and serological evidence of human infection have raised a concern about the potential of IDV adapting to humans. Here, we directly compared IDV’s stability to that of other influenza types (A, B, and C) following prolonged incubation at high temperatures or in a low-pH environment. We found that IDV is the most stable of the four types of influenza viruses. Importantly, we demonstrated that the hemagglutinin-esterase fusion (HEF) protein, which drives the fusion between viral and host cell membranes, is the primary determinant for the high thermal and acid stability of IDV. Considering that there is a link between the acid stability of the hemagglutinin protein of influenza A virus and its cross-species transmission, further investigation of the mechanism of HEF-directed viral tolerance may offer novel insights into tissue tropism and cross-species transmission of influenza viruses.


Author(s):  
A. N. Shikov ◽  
E. I. Sergeeva ◽  
O. K. Demina ◽  
V. A. Ternovoy ◽  
V. V. Ryabinin ◽  
...  

Developed was the DNA-biochip to identify subtypes of influenza A virus, pathogenic for humans. Microchip was capable of detecting H1, H3, H5-subtypes of hemagglutinin (including H1-subtype of pandemic A/H1N1(2009) influenza virus ) and neuraminidase subtypes N1,N2 of influenza virus. This microchip was successfully tested on the strains of A/H5N1 highly pathogenic avian influenza virus, A/H1N1(2009) pandemic influenza virus, A/H1N1 and A/H3N2 seasonal influenza viruses.


2017 ◽  
Vol 13 (1) ◽  
pp. 1-11
Author(s):  
Gabriela Żaroffe ◽  
Jacek Leluk ◽  
Agata Żyźniewska ◽  
Rafał Filip

AbstractInfluenza viruses are significant human respiratory pathogens that cause infections and unpredictable pandemic outbreaks. M2 ion-channel protein, participating in the transmission of viral genetic materials into infected cells, is considered to be the crucial target for old-generation drugs such as rimantadine and amantadine. Neuraminidase protein, which is responsible for the replication of the influenza virus, is affected by the new generation of drugs, including oseltamivir (Tamiflu) and zanamivir (Relenza). The virus mutations that cause oseltamivir resistance are also described. This review presents the details concerning the treatment of influenza neuraminidase inhibitors against the H5N1 strain. It also describes virus mutations that cause resistance to oseltamivir and presents a new drug, peramivir, which is a neuraminidase inhibitor that was introduced against the H1N1 epidemic. This work specifies the details of the pharmacokinetics, dosing, toxicity, side effects, and efficiency of the drugs being used against influenza A virus infections.


2010 ◽  
Vol 84 (13) ◽  
pp. 6527-6535 ◽  
Author(s):  
Wenwei Tu ◽  
Huawei Mao ◽  
Jian Zheng ◽  
Yinping Liu ◽  
Susan S. Chiu ◽  
...  

ABSTRACT While few children and young adults have cross-protective antibodies to the pandemic H1N1 2009 (pdmH1N1) virus, the illness remains mild. The biological reasons for these epidemiological observations are unclear. In this study, we demonstrate that the bulk memory cytotoxic T lymphocytes (CTLs) established by seasonal influenza viruses from healthy individuals who have not been exposed to pdmH1N1 can directly lyse pdmH1N1-infected target cells and produce gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Using influenza A virus matrix protein 1 (M158-66) epitope-specific CTLs isolated from healthy HLA-A2+ individuals, we further found that M158-66 epitope-specific CTLs efficiently killed both M158-66 peptide-pulsed and pdmH1N1-infected target cells ex vivo. These M158-66-specific CTLs showed an effector memory phenotype and expressed CXCR3 and CCR5 chemokine receptors. Of 94 influenza A virus CD8 T-cell epitopes obtained from the Immune Epitope Database (IEDB), 17 epitopes are conserved in pdmH1N1, and more than half of these conserved epitopes are derived from M1 protein. In addition, 65% (11/17) of these epitopes were 100% conserved in seasonal influenza vaccine H1N1 strains during the last 20 years. Importantly, seasonal influenza vaccination could expand the functional M158-66 epitope-specific CTLs in 20% (4/20) of HLA-A2+ individuals. Our results indicated that memory CTLs established by seasonal influenza A viruses or vaccines had cross-reactivity against pdmH1N1. These might explain, at least in part, the unexpected mild pdmH1N1 illness in the community and also might provide some valuable insights for the future design of broadly protective vaccines to prevent influenza, especially pandemic influenza.


2009 ◽  
Vol 83 (8) ◽  
pp. 3843-3851 ◽  
Author(s):  
Daniela Kugel ◽  
Georg Kochs ◽  
Karola Obojes ◽  
Joachim Roth ◽  
Gary P. Kobinger ◽  
...  

ABSTRACT The type I interferon (IFN) response represents one of the first lines of defense against influenza virus infections. In this study, we assessed the protective potential of exogenous IFN-α against seasonal and highly pathogenic influenza viruses in ferrets. Intranasal treatment with IFN-α several hours before infection with the H1N1 influenza A virus strain A/USSR/90/77 reduced viral titers in nasal washes at least 100-fold compared to mock-treated controls. IFN-treated animals developed only mild and transient respiratory symptoms, and the characteristic fever peak seen in mock-treated ferrets 2 days after infection was not observed. Repeated application of IFN-α substantially increased the protective effect of the cytokine treatment. IFN-α did not increase survival after infection with the highly pathogenic H5N1 avian influenza A virus strain A/Vietnam/1203/2004. However, viral titers in nasal washes were significantly reduced at days 1 and 3 postinfection. Our study shows that intranasal application of IFN-α can protect ferrets from seasonal influenza viruses, which replicate mainly in the upper respiratory tract, but not from highly pathogenic influenza viruses, which also disseminate to the lung. Based on these results, a more intensive evaluation of IFN-α as an emergency drug against pandemic influenza A is warranted.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James D. Allen ◽  
Ted M. Ross

AbstractWhile vaccines remain the best tool for preventing influenza virus infections, they have demonstrated low to moderate effectiveness in recent years. Seasonal influenza vaccines typically consist of wild-type influenza A and B viruses that are limited in their ability to elicit protective immune responses against co-circulating influenza virus variant strains. Improved influenza virus vaccines need to elicit protective immune responses against multiple influenza virus drift variants within each season. Broadly reactive vaccine candidates potentially provide a solution to this problem, but their efficacy may begin to wane as influenza viruses naturally mutate through processes that mediates drift. Thus, it is necessary to develop a method that commercial vaccine manufacturers can use to update broadly reactive vaccine antigens to better protect against future and currently circulating viral variants. Building upon the COBRA technology, nine next-generation H3N2 influenza hemagglutinin (HA) vaccines were designed using a next generation algorithm and design methodology. These next-generation broadly reactive COBRA H3 HA vaccines were superior to wild-type HA vaccines at eliciting antibodies with high HAI activity against a panel of historical and co-circulating H3N2 influenza viruses isolated over the last 15 years, as well as the ability to neutralize future emerging H3N2 isolates.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 234
Author(s):  
Sarah Al-Beltagi ◽  
Cristian Alexandru Preda ◽  
Leah V. Goulding ◽  
Joe James ◽  
Juan Pu ◽  
...  

The long-term control strategy of SARS-CoV-2 and other major respiratory viruses needs to include antivirals to treat acute infections, in addition to the judicious use of effective vaccines. Whilst COVID-19 vaccines are being rolled out for mass vaccination, the modest number of antivirals in use or development for any disease bears testament to the challenges of antiviral development. We recently showed that non-cytotoxic levels of thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase pump, induces a potent host innate immune antiviral response that blocks influenza A virus replication. Here we show that TG is also highly effective in blocking the replication of respiratory syncytial virus (RSV), common cold coronavirus OC43, SARS-CoV-2 and influenza A virus in immortalized or primary human cells. TG’s antiviral performance was significantly better than remdesivir and ribavirin in their respective inhibition of OC43 and RSV. Notably, TG was just as inhibitory to coronaviruses (OC43 and SARS-CoV-2) and influenza viruses (USSR H1N1 and pdm 2009 H1N1) in separate infections as in co-infections. Post-infection oral gavage of acid-stable TG protected mice against a lethal influenza virus challenge. Together with its ability to inhibit the different viruses before or during active infection, and with an antiviral duration of at least 48 h post-TG exposure, we propose that TG (or its derivatives) is a promising broad-spectrum inhibitor against SARS-CoV-2, OC43, RSV and influenza virus.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 509 ◽  
Author(s):  
Meenakshi Tiwary ◽  
Robert J. Rooney ◽  
Swantje Liedmann ◽  
Kim S. LeMessurier ◽  
Amali E. Samarasinghe

Eosinophils, previously considered terminally differentiated effector cells, have multifaceted functions in tissues. We previously found that allergic mice with eosinophil-rich inflammation were protected from severe influenza and discovered specialized antiviral effector functions for eosinophils including promoting cellular immunity during influenza. In this study, we hypothesized that eosinophil responses during the early phase of influenza contribute to host protection. Using in vitro and in vivo models, we found that eosinophils were rapidly and dynamically regulated upon influenza A virus (IAV) exposure to gain migratory capabilities to traffic to lymphoid organs after pulmonary infection. Eosinophils were capable of neutralizing virus upon contact and combinations of eosinophil granule proteins reduced virus infectivity through hemagglutinin inactivation. Bi-directional crosstalk between IAV-exposed epithelial cells and eosinophils occurred after IAV infection and cross-regulation promoted barrier responses to improve antiviral defenses in airway epithelial cells. Direct interactions between eosinophils and airway epithelial cells after IAV infection prevented virus-induced cytopathology in airway epithelial cells in vitro, and eosinophil recipient IAV-infected mice also maintained normal airway epithelial cell morphology. Our data suggest that eosinophils are important in the early phase of IAV infection providing immediate protection to the epithelial barrier until adaptive immune responses are deployed during influenza.


2001 ◽  
Vol 75 (17) ◽  
pp. 8127-8136 ◽  
Author(s):  
Daniel R. Perez ◽  
Ruben O. Donis

ABSTRACT Influenza A virus expresses three viral polymerase (P) subunits—PB1, PB2, and PA—all of which are essential for RNA and viral replication. The functions of P proteins in transcription and replication have been partially elucidated, yet some of these functions seem to be dependent on the formation of a heterotrimer for optimal viral RNA transcription and replication. Although it is conceivable that heterotrimer subunit interactions may allow a more efficient catalysis, direct evidence of their essentiality for viral replication is lacking. Biochemical studies addressing the molecular anatomy of the P complexes have revealed direct interactions between PB1 and PB2 as well as between PB1 and PA. Previous studies have shown that the N-terminal 48 amino acids of PB1, termed domain α, contain the residues required for binding PA. We report here the refined mapping of the amino acid sequences within this small region of PB1 that are indispensable for binding PA by deletion mutagenesis of PB1 in a two-hybrid assay. Subsequently, we used site-directed mutagenesis to identify the critical amino acid residues of PB1 for interaction with PA in vivo. The first 12 amino acids of PB1 were found to constitute the core of the interaction interface, thus narrowing the previous boundaries of domain α. The role of the minimal PB1 domain α in influenza virus gene expression and genome replication was subsequently analyzed by evaluating the activity of a set of PB1 mutants in a model reporter minigenome system. A strong correlation was observed between a functional PA binding site on PB1 and P activity. Influenza viruses bearing mutant PB1 genes were recovered using a plasmid-based influenza virus reverse genetics system. Interestingly, mutations that rendered PB1 unable to bind PA were either nonviable or severely growth impaired. These data are consistent with an essential role for the N terminus of PB1 in binding PA, P activity, and virus growth.


Sign in / Sign up

Export Citation Format

Share Document