scholarly journals Functional Expression of theClostridium ljungdahliiAcetyl-Coenzyme A Synthase inClostridium acetobutylicumas Demonstrated by a NovelIn VivoCO Exchange Activity En Route to Heterologous Installation of a Functional Wood-Ljungdahl Pathway

2018 ◽  
Vol 84 (7) ◽  
Author(s):  
Alan G. Fast ◽  
Eleftherios T. Papoutsakis

ABSTRACTEngineering the Wood-Ljungdahl pathway (WLP) in the established industrial organismClostridium acetobutylicumwould allow for the conversion of carbohydrates into butanol, acetone, and other metabolites at higher yields than are currently possible, while minimizing CO2and H2release. To this effect, we expressed 11Clostridium ljungdahliicore genes coding for enzymes and accessory proteins of the WLP inClostridium acetobutylicum. The engineered WLP inC. acetobutylicumshowed functionality of the eastern branch of the pathway based on the formation of labeled 5,10-methylenetetrahydrofolate from13C-labeled formate, as well as functionality of the western branch as evidenced by the formation of CO from CO2. However, the lack of labeling in acetate and butyrate pools indicated that the connection between the two branches is not functional. The focus of our investigation then centered on the functional expression of the acetyl-coenzyme A (CoA) synthase (ACS), which forms a complex with the CO dehydrogenase (CODH) and serves to link the two branches of the WLP. The CODH/ACS complex catalyzes the reduction of CO2to CO and the condensation of CO with a methyl group to form acetyl-CoA, respectively. Here, we show the simultaneous activities of the two recombinant enzymes. We demonstratein vivothe classicalin vitroACS carbonyl carbon exchange assay, whereby the carbonyl carbon of acetyl-CoA is exchanged with the CO carbon. Our data suggest that the low heterologous expression of ACS may limit the functionality of the heterologous WLP inC. acetobutylicum.IMPORTANCEThe bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) fromC. ljungdahliiwas heterologously expressed in the obligate heterotrophC. acetobutylicum. The functional activity of the CODH was confirmed through both the oxidation and reduction of CO, as had previously been shown for the heterologous CODH fromClostridium carboxidivorans. Significantly, a novelin vivoassay for ACS exchange activity using13C-tracers was developed and used to confirm functional ACS expression.

2017 ◽  
Vol 83 (16) ◽  
Author(s):  
Ellinor D. Carlson ◽  
Eleftherios T. Papoutsakis

ABSTRACT With recent advances in synthetic biology, CO2 could be utilized as a carbon feedstock by native or engineered organisms, assuming the availability of electrons. Two key enzymes used in autotrophic CO2 fixation are the CO dehydrogenase (CODH) and acetyl coenzyme A (acetyl-CoA) synthase (ACS), which form a bifunctional heterotetrameric complex. The CODH/ACS complex can reversibly catalyze CO2 to CO, effectively enabling a biological water-gas shift reaction at ambient temperatures and pressures. The CODH/ACS complex is part of the Wood-Ljungdahl pathway (WLP) used by acetogens to fix CO2, and it has been well characterized in native hosts. So far, only a few recombinant CODH/ACS complexes have been expressed in heterologous hosts, none of which demonstrated in vivo CO2 reduction. Here, functional expression of the Clostridium carboxidivorans CODH/ACS complex is demonstrated in the solventogen Clostridium acetobutylicum, which was engineered to express CODH alone or together with the ACS. Both strains exhibited CO2 reduction and CO oxidation activities. The CODH reactions were interrogated using isotopic labeling, thus verifying that CO was a direct product of CO2 reduction, and vice versa. CODH apparently uses a native C. acetobutylicum ferredoxin as an electron carrier for CO2 reduction. Heterologous CODH activity depended on actively growing cells and required the addition of nickel, which is inserted into CODH without the need to express the native Ni insertase protein. Increasing CO concentrations in the gas phase inhibited CODH activity and altered the metabolite profile of the CODH-expressing cells. This work provides the foundation for engineering a complete and functional WLP in nonnative host organisms. IMPORTANCE Functional expression of CO dehydrogenase (CODH) from Clostridium carboxidivorans was demonstrated in C. acetobutylicum, which is natively incapable of CO2 fixation. The expression of CODH, alone or together with the C. carboxidivorans acetyl-CoA synthase (ACS), enabled C. acetobutylicum to catalyze both CO2 reduction and CO oxidation. Importantly, CODH exhibited activity in both the presence and absence of ACS. 13C-tracer studies confirmed that the engineered C. acetobutylicum strains can reduce CO2 to CO and oxidize CO during growth on glucose.


mBio ◽  
2012 ◽  
Vol 3 (4) ◽  
Author(s):  
Tara N. Stuecker ◽  
Alex C. Tucker ◽  
Jorge C. Escalante-Semerena

ABSTRACTCoenzyme A (CoA) is essential for cellular chemistry in all forms of life. The pantothenate moiety of CoA is generated from the condensation of pantoate and β-alanine. β-Alanine is formed by decarboxylation ofl-aspartate catalyzed by PanD, a pyruvoyl enzyme that is synthesized by the cell as an inactive precursor (pro-PanD). Maturation of pro-PanD into PanD occurs via a self-cleavage event at residue Ser25, which forms the catalytic pyruvoyl moiety. We recently reported thatSalmonella entericaPanM was necessary for pro-PanD maturation, bothin vitroandin vivo. Notably, PanM is annotated as a Gcn5-likeN-acetyltransferase (GNAT), which suggested that lysine acetylation might be part of the mechanism of maturation. Here we show that PanM lacks acetyltransferase activity and that acetyl-CoA stimulates its activity. Results of experiments with nonhydrolyzable ethyl-CoA and genetically encoded acetyl-lysine-containing PanD support the conclusion that PanM-dependent pro-PanD maturation does not involve an acetyl transfer event. We also show that CoA binding to PanM is needed forin vivoactivity and that disruption of CoA binding prevents PanM from interacting with PanD. We conclude that PanM is a GNAT homologue that lost its acetyltransferase activity and evolved a new function as an acetyl-CoA sensor that can trigger the maturation of pro-PanD.IMPORTANCENε-lysine acetylation is increasingly being recognized as a widespread and important form of posttranslational regulation in bacteria. The acetyltransferases that catalyze these reactions are poorly characterized in bacteria. Based on annotation, most bacterial genomes contain several acetyltransferases, but the physiological roles of only a handful have been determined. Notably, a subset of putative acetyltransferases lack residues that are critical for activity in most biochemically characterized acetyltransferases. We show that one such putative acetyltransferase, PanM (formerly YhhK), lacks acetyltransferase activity but functions instead as an acetyl-coenzyme A (CoA) sensor. This work establishes the possibility that, like PanM, other putative acetyltransferases may have evolved new functions while retaining the ability to sense acetyl-CoA.


2017 ◽  
Vol 5 (9) ◽  
Author(s):  
Miguel A. Matilla ◽  
Zulema Udaondo ◽  
Tino Krell ◽  
George P. C. Salmond

ABSTRACT Serratia marcescens MSU97 was isolated from the Guayana region of Venezuela due to its ability to suppress plant-pathogenic oomycetes. Here, we report the genome sequence of MSU97, which produces various antibiotics, including the bacterial acetyl-coenzyme A (acetyl-CoA) carboxylase inhibitor andrimid, the chlorinated macrolide oocydin A, and the red linear tripyrrole antibiotic prodigiosin.


2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Di Zhu ◽  
Yifeng Wei ◽  
Jinyu Yin ◽  
Dazhi Liu ◽  
Ee Lui Ang ◽  
...  

ABSTRACT Bacteria utilize diverse biochemical pathways for the degradation of the pyrimidine ring. The function of the pathways studied to date has been the release of nitrogen for assimilation. The most widespread of these pathways is the reductive pyrimidine catabolic pathway, which converts uracil into ammonia, carbon dioxide, and β-alanine. Here, we report the characterization of a β-alanine:pyruvate aminotransferase (PydD2) and an NAD+-dependent malonic semialdehyde dehydrogenase (MSDH) from a reductive pyrimidine catabolism gene cluster in Bacillus megaterium. Together, these enzymes convert β-alanine into acetyl coenzyme A (acetyl-CoA), a key intermediate in carbon and energy metabolism. We demonstrate the growth of B. megaterium in defined medium with uracil as its sole carbon and energy source. Homologs of PydD2 and MSDH are found in association with reductive pyrimidine pathway genes in many Gram-positive bacteria in the order Bacillales. Our study provides a basis for further investigations of the utilization of pyrimidines as a carbon and energy source by bacteria. IMPORTANCE Pyrimidine has wide occurrence in natural environments, where bacteria use it as a nitrogen and carbon source for growth. Detailed biochemical pathways have been investigated with focus mainly on nitrogen assimilation in the past decades. Here, we report the discovery and characterization of two important enzymes, PydD2 and MSDH, which constitute an extension for the reductive pyrimidine catabolic pathway. These two enzymes, prevalent in Bacillales based on our bioinformatics studies, allow stepwise conversion of β-alanine, a previous “end product” of the reductive pyrimidine degradation pathway, to acetyl-CoA as carbon and energy source.


2011 ◽  
Vol 77 (13) ◽  
pp. 4455-4464 ◽  
Author(s):  
M. H. Wilbrink ◽  
M. Petrusma ◽  
L. Dijkhuizen ◽  
R. van der Geize

ABSTRACTThe actinobacterial cholesterol catabolic gene cluster contains a subset of genes that encode β-oxidation enzymes with a putative role in sterol side chain degradation. We investigated the physiological roles of several genes, i.e.,fadD17,fadD19,fadE26,fadE27, andro04690DSM43269, by gene inactivation studies in mutant strain RG32 ofRhodococcus rhodochrousDSM43269. Mutant strain RG32 is devoid of 3-ketosteroid 9α-hydroxylase (KSH) activity and was constructed following the identification, cloning, and sequential inactivation of fivekshAgene homologs in strain DSM43269. We show that mutant strain RG32 is fully blocked in steroid ring degradation but capable of selective sterol side chain degradation. Except for RG32ΔfadD19, none of the mutants constructed in RG32 revealed an aberrant phenotype on sterol side chain degradation compared to parent strain RG32. Deletion offadD19in strain RG32 completely blocked side chain degradation of C-24 branched sterols but interestingly not that of cholesterol. The additional inactivation offadD17in mutant RG32ΔfadD19also did not affect cholesterol side chain degradation. Heterologously expressed FadD19DSM43269nevertheless was active toward steroid-C26-oic acid substrates. Our data identified FadD19 as a steroid-coenzyme A (CoA) ligase with an essentialin vivorole in the degradation of the side chains of C-24 branched-chain sterols. This paper reports the identification and characterization of a CoA ligase with anin vivorole in sterol side chain degradation. The high similarity (67%) between the FadD19DSM43269and FadD19H37Rvenzymes further suggests that FadD19H37Rvhas anin vivorole in sterol metabolism ofMycobacterium tuberculosisH37Rv.


2014 ◽  
Vol 80 (8) ◽  
pp. 2536-2545 ◽  
Author(s):  
Aaron B. Hawkins ◽  
Michael W. W. Adams ◽  
Robert M. Kelly

ABSTRACTThe extremely thermoacidophilic archaeonMetallosphaera sedula(optimum growth temperature, 73°C, pH 2.0) grows chemolithoautotrophically on metal sulfides or molecular hydrogen by employing the 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) carbon fixation cycle. This cycle adds two CO2molecules to acetyl coenzyme A (acetyl-CoA) to generate 4HB, which is then rearranged and cleaved to form two acetyl-CoA molecules. Previous metabolic flux analysis showed that two-thirds of central carbon precursor molecules are derived from succinyl-CoA, which is oxidized to malate and oxaloacetate. The remaining one-third is apparently derived from acetyl-CoA. As such, the steps beyond succinyl-CoA are essential for completing the carbon fixation cycle and for anapleurosis of acetyl-CoA. Here, the final four enzymes of the 3HP/4HB cycle, 4-hydroxybutyrate-CoA ligase (AMP forming) (Msed_0406), 4-hydroxybutyryl-CoA dehydratase (Msed_1321), crotonyl-CoA hydratase/(S)-3-hydroxybutyryl-CoA dehydrogenase (Msed_0399), and acetoacetyl-CoA β-ketothiolase (Msed_0656), were produced recombinantly inEscherichia coli, combinedin vitro, and shown to convert 4HB to acetyl-CoA. Metabolic pathways connecting CO2fixation and central metabolism were examined using a gas-intensive bioreactor system in whichM. sedulawas grown under autotrophic (CO2-limited) and heterotrophic conditions. Transcriptomic analysis revealed the importance of the 3HP/4HB pathway in supplying acetyl-CoA to anabolic pathways generating intermediates inM. sedulametabolism. The results indicated that flux between the succinate and acetyl-CoA branches in the 3HP/4HB pathway is governed by 4-hydroxybutyrate-CoA ligase, possibly regulated posttranslationally by the protein acetyltransferase (Pat)/Sir2-dependent system. Taken together, this work confirms the final four steps of the 3HP/4HB pathway, thereby providing the framework for examining connections between CO2fixation and central metabolism inM. sedula.


2020 ◽  
Vol 86 (13) ◽  
Author(s):  
Yunpeng Yang ◽  
Huan Zhang ◽  
Nannan Lang ◽  
Lu Zhang ◽  
Changsheng Chai ◽  
...  

ABSTRACT Small RNAs (sRNAs) are crucial regulatory molecules in organisms and are well-known not only for their roles in the control of diverse crucial biological processes but also for their value in regulation rewiring. However, to date, in Gram-positive anaerobic solventogenic clostridia (a group of important industrial bacteria with exceptional substrate and product diversity), sRNAs remain minimally explored, and thus there is a lack of detailed understanding regarding these important molecules and their use as targets for genetic improvement. Here, we performed large-scale phenotypic screens of a transposon-mediated mutant library of Clostridium acetobutylicum, a typical solventogenic clostridial species, and discovered a novel sRNA (sr8384) that functions as a crucial regulator of cell growth. Comparative transcriptomic data combined with genetic and biochemical analyses revealed that sr8384 acts as a pleiotropic regulator and controls multiple targets that are associated with crucial biological processes through direct or indirect interactions. Notably, the in vivo expression level of sr8384 determined the cell growth rate, thereby affecting the solvent titer and productivity. These findings indicate the importance of the sr8384-mediated regulatory network in C. acetobutylicum. Furthermore, a homolog of sr8384 was discovered and proven to be functional in another important Clostridium species, C. beijerinckii, suggesting the potential broad role of this sRNA in clostridia. Our work showcases a previously unknown potent and complex role of sRNAs in clostridia, providing new opportunities for understanding and engineering these anaerobes. IMPORTANCE The uses of sRNAs as new resources for functional studies and strain modifications are promising strategies in microorganisms. However, these crucial regulatory molecules have hardly been explored in industrially important solventogenic clostridia. Here, we identified sr8384 as a novel determinant sRNA controlling the cell growth of solventogenic Clostridium acetobutylicum. Based on a detailed functional analysis, we further reveal the pleiotropic function of sr8384 and its multiple direct and indirect crucial targets, which represents a valuable source for understanding and optimizing this anaerobe. Of note, manipulation of this sRNA achieves improved cell growth and solvent synthesis. Our findings provide a new perspective for future studies on regulatory sRNAs in clostridia.


2011 ◽  
Vol 10 (8) ◽  
pp. 1043-1052 ◽  
Author(s):  
Seunghoon Lee ◽  
Hokyoung Son ◽  
Jungkwan Lee ◽  
Kyunghun Min ◽  
Gyung Ja Choi ◽  
...  

ABSTRACTAcetyl coenzyme A (acetyl-CoA) is a crucial metabolite for energy metabolism and biosynthetic pathways and is produced in various cellular compartments with spatial and temporal precision. Our previous study on ATP citrate lyase (ACL) inGibberella zeaerevealed that ACL-dependent acetyl-CoA production is important for histone acetylation, especially in sexual development, but is not involved in lipid synthesis. In this study, we deleted additional acetyl-CoA synthetic genes, the acetyl-CoA synthetases (ACSgenesACS1andACS2), to identify alternative acetyl-CoA production mechanisms for ACL. TheACS1deletion resulted in a defect in sexual development that was mainly due to a reduction in 1-palmitoyl-2-oleoyl-3-linoleoyl-rac-glycerol production, which is required for perithecium development and maturation. Another ACS coding gene,ACS2, has accessorial functions forACS1and has compensatory functions forACLas a nuclear acetyl-CoA producer. This study showed that acetate is readily generated during the entire life cycle ofG. zeaeand has a pivotal role in fungal metabolism. Because ACSs are components of the pyruvate-acetaldehyde-acetate pathway, this fermentation process might have crucial roles in various physiological processes for filamentous fungi.


mBio ◽  
2014 ◽  
Vol 5 (6) ◽  
Author(s):  
Jens Nielsen

ABSTRACT The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl-CoA can be formed from glucose in high yield. Here the perspective of generating yeast platform strains that have such properties is discussed in the context of a major breakthrough with expression of a functional pyruvate dehydrogenase complex in the cytosol.


2006 ◽  
Vol 50 (8) ◽  
pp. 2707-2712 ◽  
Author(s):  
C. Freiberg ◽  
J. Pohlmann ◽  
P. G. Nell ◽  
R. Endermann ◽  
J. Schuhmacher ◽  
...  

ABSTRACT The pseudopeptide pyrrolidinedione antibiotics, such as moiramide B, have recently been discovered to target the multisubunit acetyl coenzyme A (acetyl-CoA) carboxylases of bacteria. In this paper, we describe synthetic variations of each moiety of the modularly composed pyrrolidinediones, providing insight into structure-activity relationships of biochemical target activity, in vitro potency, and in vivo efficacy. The novel derivatives showed highly improved activities against gram-positive bacteria compared to those of previously reported variants. The compounds exhibited a MIC90 value of 0.1 μg/ml against a broad spectrum of Staphylococcus aureus clinical isolates. No cross-resistance to antibiotics currently used in clinical practice was observed. Resistance mutations induced by pyrrolidinediones are exclusively located in the carboxyltransferase subunits of the bacterial acetyl-CoA carboxylase, indicating the identical mechanisms of action of all derivatives tested. Improvement of the physicochemical profile was achieved by salt formation, leading to aqueous solubilities of up to 5 g/liter. For the first time, the in vitro activity of this compound class was compared with its in vivo efficacy, demonstrating a path from compounds weakly active in vivo to agents with significant efficacy. In a murine model of S. aureus sepsis, the 100% effective dose of the best compound reported was 25 mg/kg of body weight, only fourfold higher than that of the comparator molecule linezolid. The obvious improvements achieved by chemical derivatization reflect the potential of this novel antibiotic compound class for future therapy.


Sign in / Sign up

Export Citation Format

Share Document