solventogenic clostridia
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 13)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
pp. 107889
Author(s):  
Patakova Petra ◽  
Branska Barbora ◽  
Vasylkivska Maryna ◽  
Jureckova Katerina ◽  
Musilova Jana ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jun Feng ◽  
Jie Zhang ◽  
Yuechao Ma ◽  
Yiming Feng ◽  
Shangjun Wang ◽  
...  

AbstractBioproduction of renewable chemicals is considered as an urgent solution for fossil energy crisis. However, despite tremendous efforts, it is still challenging to generate microbial strains that can produce target biochemical to high levels. Here, we report an example of biosynthesis of high-value and easy-recoverable derivatives built upon natural microbial pathways, leading to improvement in bioproduction efficiency. By leveraging pathways in solventogenic clostridia for co-producing acyl-CoAs, acids and alcohols as precursors, through rational screening for host strains and enzymes, systematic metabolic engineering-including elimination of putative prophages, we develop strains that can produce 20.3 g/L butyl acetate and 1.6 g/L butyl butyrate. Techno-economic analysis results suggest the economic competitiveness of our developed bioprocess. Our principles of selecting the most appropriate host for specific bioproduction and engineering microbial chassis to produce high-value and easy-separable end products may be applicable to other bioprocesses.


Author(s):  
Mamou Diallo ◽  
Servé W. M. Kengen ◽  
Ana M. López-Contreras

AbstractThe Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.


2020 ◽  
Vol 15 (10) ◽  
pp. 2000136 ◽  
Author(s):  
Yunliang Chen ◽  
Yunpeng Yang ◽  
Xinjian Ji ◽  
Ran Zhao ◽  
Guoquan Li ◽  
...  

2020 ◽  
Vol 367 (14) ◽  
Author(s):  
Miriam A Schüler ◽  
Benjamin A Stegmann ◽  
Anja Poehlein ◽  
Rolf Daniel ◽  
Peter Dürre

ABSTRACT The genus Clostridium consists of a diverse group of pathogenic and non-pathogenic bacteria. The non-pathogenic clostridia contain several solventogenic members of industrial importance, such as Clostridium acetobutylicum or C. beijerinckii. In the process of acetone–butanol–ethanol (ABE) fermentation, these strains are used in large scale fermentation plants since almost 100 years. Soon after establishment of the first plants, the fermentation processes suffered from different bacteriophage infections worldwide. A limited set of studies addressing bacteriophages in solventogenic clostridia have been conducted since then. In this study, we present the genome sequence of the temperate bacteriophage TBP2 of the solventogenic strain C. saccharoperbutylacetonicum N1-4 (HMT) that is used for ABE fermentation. The phage genome consists of 38 039 bp and includes 48 open reading frames. Sequence analysis indicates that the genome encloses random parts of the bacterial genome in addition to its own DNA. It represents the first fully sequenced genome of a temperate bacteriophage infecting solventogenic clostridia.


2020 ◽  
Vol 86 (13) ◽  
Author(s):  
Yunpeng Yang ◽  
Huan Zhang ◽  
Nannan Lang ◽  
Lu Zhang ◽  
Changsheng Chai ◽  
...  

ABSTRACT Small RNAs (sRNAs) are crucial regulatory molecules in organisms and are well-known not only for their roles in the control of diverse crucial biological processes but also for their value in regulation rewiring. However, to date, in Gram-positive anaerobic solventogenic clostridia (a group of important industrial bacteria with exceptional substrate and product diversity), sRNAs remain minimally explored, and thus there is a lack of detailed understanding regarding these important molecules and their use as targets for genetic improvement. Here, we performed large-scale phenotypic screens of a transposon-mediated mutant library of Clostridium acetobutylicum, a typical solventogenic clostridial species, and discovered a novel sRNA (sr8384) that functions as a crucial regulator of cell growth. Comparative transcriptomic data combined with genetic and biochemical analyses revealed that sr8384 acts as a pleiotropic regulator and controls multiple targets that are associated with crucial biological processes through direct or indirect interactions. Notably, the in vivo expression level of sr8384 determined the cell growth rate, thereby affecting the solvent titer and productivity. These findings indicate the importance of the sr8384-mediated regulatory network in C. acetobutylicum. Furthermore, a homolog of sr8384 was discovered and proven to be functional in another important Clostridium species, C. beijerinckii, suggesting the potential broad role of this sRNA in clostridia. Our work showcases a previously unknown potent and complex role of sRNAs in clostridia, providing new opportunities for understanding and engineering these anaerobes. IMPORTANCE The uses of sRNAs as new resources for functional studies and strain modifications are promising strategies in microorganisms. However, these crucial regulatory molecules have hardly been explored in industrially important solventogenic clostridia. Here, we identified sr8384 as a novel determinant sRNA controlling the cell growth of solventogenic Clostridium acetobutylicum. Based on a detailed functional analysis, we further reveal the pleiotropic function of sr8384 and its multiple direct and indirect crucial targets, which represents a valuable source for understanding and optimizing this anaerobe. Of note, manipulation of this sRNA achieves improved cell growth and solvent synthesis. Our findings provide a new perspective for future studies on regulatory sRNAs in clostridia.


2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Bin Yang ◽  
Xiaoqun Nie ◽  
Youli Xiao ◽  
Yang Gu ◽  
Weihong Jiang ◽  
...  

ABSTRACT The AdhR regulatory protein is an activator of σ54-dependent transcription of adhA1 and adhA2 genes, which are required for alcohol synthesis in Clostridium beijerinckii. Here, we identified the signal perceived by AdhR and determined the regulatory mechanism of AdhR activity. By assaying the activity of AdhR in N-terminally truncated forms, a negative control mechanism of AdhR activity was identified in which the central AAA+ domain is subject to repression by the N-terminal GAF and PAS domains. Binding of Fe2+ to the GAF domain was found to relieve intramolecular repression and stimulate the ATPase activity of AdhR, allowing the AdhR to activate transcription. This control mechanism enables AdhR to regulate transcription of adhA1 and adhA2 in response to cellular redox status. The mutants deficient in AdhR or σ54 showed large shifts in intracellular redox state indicated by the NADH/NAD+ ratio under conditions of increased electron availability or oxidative stress. We demonstrated that the Fe2+-activated transcriptional regulator AdhR and σ54 control alcohol synthesis to maintain redox homeostasis in clostridial cells. Expression of N-terminally truncated forms of AdhR resulted in improved solvent production by C. beijerinckii. IMPORTANCE Solventogenic clostridia are anaerobic bacteria that can produce butanol, ethanol, and acetone, which can be used as biofuels or building block chemicals. Here, we show that AdhR, a σ54-dependent transcriptional activator, senses the intracellular redox status and controls alcohol synthesis in Clostridium beijerinckii. AdhR provides a new example of a GAF domain coordinating a mononuclear non-heme iron to sense and transduce the redox signal. Our study reveals a previously unrecognized functional role of σ54 in control of cellular redox balance and provides new insights into redox signaling and regulation in clostridia. Our results reveal AdhR as a novel engineering target for improving solvent production by C. beijerinckii and other solventogenic clostridia.


Sign in / Sign up

Export Citation Format

Share Document