scholarly journals Characterization of Thermobifida fusca Cutinase-Carbohydrate-Binding Module Fusion Proteins and Their Potential Application in Bioscouring

2010 ◽  
Vol 76 (23) ◽  
pp. 7896-7896 ◽  
Author(s):  
Yao Zhang ◽  
Sheng Chen ◽  
Meng Xu ◽  
Artur Cavaco-Paulo ◽  
Jing Wu ◽  
...  
2011 ◽  
Vol 16 (4) ◽  
pp. 645-653 ◽  
Author(s):  
Yao Zhang ◽  
Sheng Chen ◽  
Miao He ◽  
Jing Wu ◽  
Jian Chen ◽  
...  

2010 ◽  
Vol 76 (20) ◽  
pp. 6870-6876 ◽  
Author(s):  
Yao Zhang ◽  
Sheng Chen ◽  
Meng Xu ◽  
Artur Cavoco-Paulo ◽  
Jing Wu ◽  
...  

ABSTRACT Cutinase from Thermobifida fusca is thermally stable and has potential application in the bioscouring of cotton in the textile industry. In the present study, the carbohydrate-binding modules (CBMs) from T. fusca cellulase Cel6A (CBMCel6A) and Cellulomonas fimi cellulase CenA (CBMCenA) were fused, separately, to the carboxyl terminus of T. fusca cutinase. Both fusion enzymes, cutinase-CBMCel6A and cutinase-CBMCenA, were expressed in Escherichia coli and purified to homogeneity. Enzyme characterization showed that both displayed similar catalytic properties and pH stabilities in response to T. fusca cutinase. In addition, both fusion proteins displayed an activity half-life of 53 h at their optimal temperature of 50�C. Compared to T. fusca cutinase, in the absence of pectinase, the binding activity on cotton fiber was enhanced by 2% for cutinase-CBMCel6A and by 28% for cutinase-CBMCenA, whereas in the presence of pectinase, the binding activity was enhanced by 40% for the former and 45% for the latter. Notably, a dramatic increase of up to 3-fold was observed in the amount of released fatty acids from cotton fiber by both cutinase-CBM fusion proteins when acting in concert with pectinase. This is the first report of improving the scouring efficiency of cutinase by fusing it with CBM. The improvement in activity and the strong synergistic effect between the fusion proteins and pectinase suggest that they may have better applications in textile bioscouring than the native cutinase.


2005 ◽  
Vol 18 (10) ◽  
pp. 497-501 ◽  
Author(s):  
Emily M. Kwan ◽  
Alisdair B. Boraston ◽  
Bradley W. McLean ◽  
Douglas G. Kilburn ◽  
R. Antony J. Warren

2005 ◽  
Vol 71 (12) ◽  
pp. 7670-7678 ◽  
Author(s):  
Katsuro Yaoi ◽  
Tomonori Nakai ◽  
Yoshiro Kameda ◽  
Ayako Hiyoshi ◽  
Yasushi Mitsuishi

ABSTRACT Two xyloglucan-specific endo-β-1,4-glucanases (xyloglucanases [XEGs]), XEG5 and XEG74, with molecular masses of 40 kDa and 105 kDa, respectively, were isolated from the gram-positive bacterium Paenibacillus sp. strain KM21, which degrades tamarind seed xyloglucan. The genes encoding these XEGs were cloned and sequenced. Based on their amino acid sequences, the catalytic domains of XEG5 and XEG74 were classified in the glycoside hydrolase families 5 and 74, respectively. XEG5 is the first xyloglucanase belonging to glycoside hydrolase family 5. XEG5 lacks a carbohydrate-binding module, while XEG74 has an X2 module and a family 3 type carbohydrate-binding module at its C terminus. The two XEGs were expressed in Escherichia coli, and recombinant forms of the enzymes were purified and characterized. Both XEGs had endoglucanase active only toward xyloglucan and not toward Avicel, carboxymethylcellulose, barley β-1,3/1,4-glucan, or xylan. XEG5 is a typical endo-type enzyme that randomly cleaves the xyloglucan main chain, while XEG74 has dual endo- and exo-mode activities or processive endo-mode activity. XEG5 digested the xyloglucan oligosaccharide XXXGXXXG to produce XXXG, whereas XEG74 digestion of XXXGXXXG resulted in XXX, XXXG, and GXXXG, suggesting that this enzyme cleaves the glycosidic bond of unbranched Glc residues. Analyses using various oligosaccharide structures revealed that unique structures of xyloglucan oligosaccharides can be prepared with XEG74.


2009 ◽  
Vol 73 (1) ◽  
pp. 109-116 ◽  
Author(s):  
Megumi TANAKA ◽  
Yoshiaki UMEMOTO ◽  
Hidenori OKAMURA ◽  
Daiichirou NAKANO ◽  
Yutaka TAMARU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document